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ABSTRACT
In this paper we develop approximate Bayes estimators of the shape parameters of
the generalized inverted Kumaraswamy (GIKum) distribution based on the progres-
sive first-failure censored plan. We consider the maximum likelihood and Bayesian
estimations with gamma-informative prior distribution for the parameters, reliabil-
ity function, hazard rate and reversed hazard rate functions. We apply the Lindley’s
approximation and Markov Chain Monte Carlo (MCMC) methods. The Bayes esti-
mators have been obtained relative to both symmetric (squared error) and asymmet-
ric (linex and general entropy) loss functions. Finally, to assess the performance of
the proposed estimators, some numerical results using simulation study concerning
different sample sizes are given.
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1. Introduction

Life testing experiments are usually time consuming and costly. We therefore, use
various types of censoring schemes to cut short the experiment. The censoring scheme
in an experiment may also arise naturally without the control of the experimenter. For
example, in medical studies a patient may drop out of a study before its completion.
Initially, the popular censoring schemes were conventional type I and type II. In some
life tests, there may be an urgent need to use some test items that have not yet failed
for other purposes before the end of the test, cf. Mann et al. (1974) and Sinha (1986).
Cohen (1963) thought over this point and introduced progressive type II censoring
scheme which allows removal of items from the experiment before the final termination
point. Balakrishnan and Aggarwala (2000) compiled the work done on progressive
censoring up-to year 1999. Progressive censoring has also been studied by many authors
like Pradhan and Kundu (2009) and Krishna and Kumar (2013). There are situations
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in real life where lifetimes of items are very high and test facilities are limited. If
the test material is comparatively cheaper, one can put k × n items on test instead
of only n units. In this case n sets or groups each consisting of k items are put on
test separately. In each set only first-failure is observed and the progressive censoring
is applied to n groups. Johnson (1964) studied this type of grouping of units and
observing only first-failure. Some other studies of this type of grouping of units are
by Balasooriya (1995), Wu et al. (2003), and Wu and Yu (2005). The combination
of first-failure and progressive censoring is known as progressive first-failure censoring
scheme. This concept was given by Wu and Kus (2009). They described estimation
methods in the case of a Weibull distribution using this new censoring plan. More
recent references can be found in Lio and Tsai (2012), Kumar et al. (2015) and Dube
et al. (2016). Now, we describe the progressive first-failure censoring scheme in more
details. Assume that k×n items are put on test in n independent groups with k items
in each group. Let us adopt a progressive censoring scheme R = (R1, R2, ..., Rm). Upon
the first-failure of a unit, we remove that group in which first-failure occurred and R1

additional groups randomly from the remaining (n − 1) groups in the experiment.
As soon as the second failure takes place we remove that group and additional R2

groups randomly from remaining (n − R1 − 2) groups and so on. This procedure
continues till the mth failure occurs when the remaining Rm groups and the group

in which last failure took place are removed. Obviously,
m∑
i=1

Ri + m = n. Also, if

R1 = R2 = ... = Rm = 0, the progressive first-failure censoring scheme reduces to
first-failure censoring scheme and if R1 = R2 = ... = Rm−1 = 0 and Rm = n −m, it
reduces to first-failure type II censoring scheme, a progressive type II censored scheme
when k = 1. It is worth noting that the progressive first-failure censored scheme
with a cumulative distribution function (cdf) F (y) can be viewed as a progressive
type II censored sample from a population with the cdf 1 − (1 − F (y))k. For this
reason, results for the progressive type II censored scheme can be easily extended to
progressive first-failure censored scheme. Therefore, progressive first-failure censoring
is a generalization of progressive censoring. Obviously, although more items are used
in the progressive first-failure censoring plan than in others, it has advantages in
terms of reducing test time. Let y1:m:n:k, y2:m:n:k, ..., ym:m:n:k be a progressive first-
failure censored sample from a population with the probability density function (pdf)
f(.) and cdf F (.) with progressive censoring scheme R. For simplicity, let us denote
(y1:m:n:k, y2:m:n:k, ..., ym:m:n:k) by y = (y1, y2, ..., ym). On the basis of a progressive
first-failure censored sample y the likelihood function is given by [see Balakrishnan
and Aggarwala (2000) and Wu and Kus (2009)]

L(y) = τkm
m∏
i=1

f(yi)[1− F (yi)]
(k(Ri+1)−1), (1.1)

where τ = n(n− 1−R1)...(n−R1 − ...−Rm−1 −m+ 1).
In the recent times, there has been an increased interest in applying some inverted

distributions to data applications in the areas of medical, economic and engineering
sciences, lifetime analysis, finance and insurance.

Kumaraswamy (Kum) distribution defined on the interval (0,1) was introduced by
Kumaraswamy (1980). It is similar to the Beta distribution, but much simpler to
use especially in simulation studies since its pdf and cdf can be expressed in closed
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form, for more detail about this family of distributions, see Barakat et al. (2017).Abd
Al-Fattah et al. (2016) derived the inverted Kumaraswamy (IKum) distribution from
the distribution after some transformations. Moreover, Iqbal et al. (2017) derived the
GIKum distribution by using a power transformation. The pdf and cdf of the GIKum
distribution are respectively given by

f(y; λ, η, κ) = λ η κ yκ−1 (1 + yκ)−(λ+1) [1− (1 + yκ)−λ]η−1 , y > 0, λ, η, κ > 0
(1.2)

and

F (y; λ, η, κ) = [1− (1 + yκ)−η]λ , y > 0, λ, η, κ > 0. (1.3)

The main objective of this paper is to estimate the parameters of the GIKum
distribution by Bayes estimators. Both the maximum likelihood estimation (MLE)
and Bayesian methods are obtained based on progressive first-failure censoring
schemes. The paper’s organization is as follows: Section 2 deals with the MLE of the
unknown parameters, as well as the functions of reliability, hazard rate and reversed
hazard rate. We use Lindley’s approximation, cf. Lindley (1980), for the calculation
of Bayes estimates in Section 3. In Section 4, for comparisons of various estimates
produced in this paper, a Monte Carlo simulation is performed. Concluding remarks
are given in Section 5.

2. Maximum Likelihood Estimators

In this section, we derive the MLEs of the unknown parameters, reliability, hazard
rate and reversed hazard rate functions, based on progressive first-failure censored
samples. Assume that the failure time distribution is the GIKum distribution with
the pdf and cdf defined in (1.2) and (1.3), respectively. From (1.1), (1.2) and (1.3),
the likelihood function is given by

L(y; λ, η, κ) = τ(kληκ)m
m∏
i=1

(yκ−1
i (1 + yκi )

−(λ+1)[1− (1 + yκi )
−λ]η−1)

×
m∏
i=1

(1− [1− (1 + yκi )
−η]λ)(k(Ri+1)−1). (2.1)

The logarithm of the likelihood function may then be written as

logL = ℓ = log τ +m log[kληκ] + (κ− 1)

m∑
i=1

log yi − (λ+ 1)

m∑
i=1

log[1 + yκi ]
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+(η−1)

m∑
i=1

log[1− (1+yκi )
−λ]+

m∑
i=1

((k(Ri+1)−1) log[1− (1− (1+yκi )
−η)λ]). (2.2)

By calculating the first partial derivatives of (2.2) with respect to λ, η, and κ and
equating to zero, we obtain the likelihood equations

m

λ
−

m∑
i=1

log [1 + yκi ] + (η − 1)

m∑
i=1

(1 + yκi )
−λ log [1 + yκi ]

1− (1 + yκi )
−λ

=

m∑
i=1

(k (1 +Ri)− 1)
(
1− (1 + yκi )

−η)λ log [1− (1 + yκi )
−η]

1−
(
1− (1 + yκi )

−η)λ ,

m

η
+

m∑
i=1

log
[
1− (1 + yκi )

−λ
]

=

m∑
i=1

λ (k (1 +Ri)− 1) (1 + yκi )
−η(1− (1 + yκi )

−η)λ−1
log [1 + yκi ]

1−
(
1− (1 + yκi )

−η)λ ,

m

κ
+

m∑
i=1

log yi − (1 + λ)

m∑
i=1

yκi log yi
1 + yκi

+ (η − 1)

m∑
i=1

λyκi (1 + yκi )
−(λ+1) log yi

1− (1 + yκi )
−λ

=

m∑
i=1

ηλ (k (1 +Ri)− 1) yκi (1 + yκi )
−(η+1)(1− (1 + yκi )

−η)λ−1
log yi

1−
(
1− (1 + yκi )

−η)λ .


(2.3)

The solutions of the non-linear equations (2.3) are λ̂, η̂, and κ̂. The MLEs of the
reliability, hazard rate and reversed hazard rate functions are, respectively, given as

R̂ (t) = 1−
[
1−

(
1 + tκ̂

)−λ̂]η̂
, t > 0,

Ĥ (t) =

λ̂ η̂ κ̂ tκ̂−1

[
1−

(
1 + tκ̂

)−λ̂]η̂−1

(1 + tκ̂)
λ̂+1

(1− (1− (1 + tκ̂)
−λ̂

)
η̂

)

, t > 0,

and

Ĥ∗ (t) =
λ̂ η̂κ̂tκ̂−1

(1 + tκ̂)
λ̂+1

[
1− (1 + tκ̂)−λ̂

] , t > 0.

3. Bayesian estimation

In this section, the Bayesian estimators of the unknown parameters λ, η, and κ of
the GIKum distribution are obtained. Also, we study the reliability, hazard rate and
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reversed hazard rate functions based on progressive first-failure censoring samples,
under symmetric (squared error) and asymmetric (linex and general entropy) loss
functions. Moreover the Lindley’s approximation and MCMC methods are obtained.
Assuming that λ, η, and κ are independent random variables with gamma informative
prior distributions respectively which are defined by

π1(λ; ζ1, ν1) =
e−ζ1ηζ1

ν1

Γ (ν1)
λν1−1; λ > 0, (ζ1, ν1 > 0),

π2(η; ζ2, ν2) =
e−ζ2ηζ2

ν2

Γ (ν2)
ην2−1; η > 0, (ζ2, ν2 > 0),

and

π3(κ; ζ3, ν3) =
e−ζ3κζ3

ν3

Γ (ν3)
κν3−1; κ > 0, (ζ3, ν3 > 0).

Then the joint prior distribution for λ, η, and κ is defined by

π(λ, η, κ) =
e−(ζ1λ+ζ2η+ζ3κ) ζ1

ν1 ζ2
ν2 ζ3

ν3

Γ (ν1) Γ (ν2) Γ (ν3)
λν1−1 ην2−1 κν3−1;

λ > 0, η > 0, κ > 0, (ζ1, ν1, ζ2, ν2, ζ3, ν3 > 0).

(3.1)

By using equations (2.1) and (3.1) we get the posterior distribution of λ, η and κ as
follows

π
(
λ, η, κ | y

)
=

α β
∞∫
0

∞∫
0

∞∫
0

α β dλ dη dκ

, (3.2)

where

α = e−(ζ1λ+ζ2η+ζ3κ) λν1+m−1 ην2+m−1 κν3+m−1
m∏
i=1

yκ−1
i (1 + yi

κ)−(λ+1),

and

β =

m∏
i=1

[
1− (1 + yi

κ)−λ
]η−1(

1−
[
1− (1 + yi

κ)−η
]λ)(k(Ri+1)−1)

.

Integration in the equation (3.2) cannot be obtained in a closed form, so we solve it
numerically. In the following subsections we derive Bayesian estimators for the param-
eters λ, η, κ, the reliability, hazard rate, and reversed hazard rate functions under
different loss functions.
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3.1. Bayesian Estimators Under Square Error Loss Function

(1) The Bayesian estimator of the parameter λ is given by

λ̂sq = E(λ) =

∞∫
0

∞∫
0

∞∫
0

(
λ π

(
λ, η, κ | y

))
dλ dη dκ,

provided that E(λ) exists. This integration cannot be solved analytically, so we
use the Lindley’s Bayes approximation for any function ψ of parameter ω, ω =
(θ1, θ2, θ3) and Q(θ1, θ2, θ3) = log π(θ1, θ2, θ3), which is defined by

E
(
ψ(ω) | y

)
≈

(
ψ(θ1, θ2, θ3) +

1

2

[∑
r

∑
s

(ψrs + 2ψrQs)σrs

+
∑
r

∑
s

∑
z

∑
w

Lrszψwσrsσzw

])
(θ1, θ2, θ3)ML

, ∀ r, s, z, w = 1, 2, 3, (3.3)

where Qi = ∂Q(θ1, θ2, θ3)
∂θi

, ψi = ∂ψ(θ1, θ2, θ3)
∂θi

, ψij = ∂2ψ(θ1, θ2, θ3)
∂θi ∂θj

, Lij =
∂2ℓ

∂θi ∂θj
, Lijk = ∂3ℓ

∂θi ∂θj ∂θk
, ∀ i, j, k = 1, 2, 3, and σij = (i, j)th element in the

matrix

 −L11

−L21

−L12

−L22

−L13

−L23

−L31 −L32 −L33

−1

, ∀ i, j = 1, 2, 3.

Substitute in the equation (3.3), ψ = λ, the Bayesian estimator of the shape
parameter λ is given as

λ̂sq ≈ λ+Q1σ11 +Q2σ12 +Q3σ13 +
1

2
(Aσ11 +Bσ21 + Cσ31) ,

where

A = σ11L111 + σ22L221 + σ33L331 + 2 (σ12L121 + σ13L131 + σ23L231) ,

B = σ11L112 + σ22L222 + σ33L332 + 2 (σ12L122 + σ13L132 + σ23L232) ,

C = σ11L113 + σ22L223 + σ33L333 + 2 (σ12L123 + σ13L133 + σ23L233) .

(2) Substitute in the equation (3.3), ψ = η, the Bayesian estimator of the parameter
η is given as

η̂sq ≈
(
η +Q1σ21 +Q2σ22 +Q3σ23 +

1

2
(Aσ12 +Bσ22 + Cσ32)

)
.

(3) Substitute in the equation (3.3), ψ = κ, the Bayesian estimator of the parameter
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κ is given as

κ̂sq ≈
(
κ+Q1σ31 +Q2σ32 +Q3σ33 +

1

2
(Aσ13 +Bσ23 + Cσ33)

)
.

(4) Substitute in the equation (3.3), ψ = R (t) , the Bayesian estimator of the relia-
bility function R(t) is given as

R̂sq (t) ≈ R (t)+ (ψ1a1 + ψ2a2 + ψ3a3 + a4 + a5)+
1

2
[A (ψ1σ11 + ψ2σ12 + ψ3σ13)

+B (ψ1σ21 + ψ2σ22 + ψ3σ23) + C (ψ1σ31 + ψ2σ32 + ψ3σ33)],

where

ai = Q1σi1 +Q2σi2 +Q3σi3; i = 1, 2, 3,

a4 = ψ12σ12 + ψ13σ13 + ψ23σ23,

a5 =
1

2
(ψ11σ11 + ψ22σ22 + ψ33σ33) .

(5) Substitute in the equation (3.3), ψ = H (t) , the Bayesian estimator of the hazard
rate function H(t) is given by

Ĥsq (t) ≈ H (t)+(ψ1a1 + ψ2a2 + ψ3a3 + a4 + a5)+
1

2
[A (ψ1σ11 + ψ2σ12 + ψ3σ13)]

+B (ψ1σ21 + ψ2σ22 + ψ3σ23) + C (ψ1σ31 + ψ2σ32 + ψ3σ33) .

(6) Substitute in the equation (3.3), ψ = H⋆ (t) , the Bayesian estimator of the
reversed hazard rate function H⋆(t) is given by

Ĥ⋆
sq (t) ≈ H⋆ (t)+(ψ1a1 + ψ2a2 + ψ3a3 + a4 + a5)+

1

2
[A (ψ1σ11 + ψ2σ12 + ψ3σ13)

+B (ψ1σ21 + ψ2σ22 + ψ3σ23) + C (ψ1σ31 + ψ2σ32 + ψ3σ33)].

3.2. Bayesian Estimators Under Linear-Exponential Loss Function
(LINEX)

(1) Substitute in the equation (3.3), ψ = e−ρλ, the Bayesian estimator of the shape
parameter λ is given as

λ̂LINEX ≈
−1
ρ log

[
e−ρλ − ρ

eλρ (Q1σ11 +Q2σ12 +Q3σ13) +
ρ2

2eλρσ11 − ρ
2eλρ (Aσ11 +Bσ21 + Cσ31)

]
.

53



Asian Journal of Statistical Sciences M. Yusuf a and H. M. Barakat b

(2) The Bayesian estimator of the parameter η is given by

η̂LINEX = −1

ρ
log
[
E
(
e−ρη

)]
,

provided that E (e−ρη) exists. Substitute in the equation (3.3), ψ = e−ρη, the
Bayesian estimator of the parameter η is given by

η̂LINEX ≈
−1
ρ log

[
e−ρη − ρ

eηρ (Q1σ21 +Q2σ22 +Q3σ23) +
ρ2

2eηρσ22 − ρ
2eηρ (Aσ12 +Bσ22 + Cσ32)

]
.

(3) Substitute in the equation (3.3), ψ = e−ρκ, the Bayesian estimator of the shape
parameter κ is given by

κ̂LINEX ≈
−1
ρ log

[
e−ρκ − ρ

eκρ (Q1σ31 +Q2σ32 +Q3σ33) +
ρ2

2eκρσ33 − ρ
2eκρ (Aσ13 +Bσ23 + Cσ33)

]
.

(4) Substitute in the equation (3.3), ψ = e−ρR(t), the Bayesian estimator of the
reliability function R(t) is given by

R̂LINEX(t) ≈ −1

ρ
log
[
e−ρR(t) + (ψ1a1 + ψ2a2 + ψ3a3 + a4 + a5)

+
1

2
[A (ψ1σ11+ψ2σ12 + ψ3σ13) +B (ψ1σ21+ψ2σ22+ψ3σ23)+C (ψ1σ31+ψ2σ32+ψ3σ33)]

]
.

(5) Substitute in the equation (3.3), ψ = e−ρH(t), the Bayesian estimator of the
hazard rate function H(t) is given as

ĤLINEX(t) ≈ −1

ρ
log
[
e−ρH(t) + (ψ1a1 + ψ2a2 + ψ3a3 + a4 + a5)

+
1

2
[A (ψ1σ11+ψ2σ12+ψ3σ13)+B (ψ1σ21+ψ2σ22+ψ3σ23)+C (ψ1σ31+ψ2σ32+ψ3σ33)]

]
.

(6) Substitute in the equation (3.3), ψ = e−ρH
⋆(t), the Bayesian estimator of the

reversed hazard rate function H⋆(t) is given as

Ĥ⋆
LINEX(t) ≈ −1

ρ
log
[
e−ρH

⋆(t) + (ψ1a1 + ψ2a2 + ψ3a3 + a4 + a5)

+
1

2
[A (ψ1σ11+ψ2σ12+ψ3σ13)+B (ψ1σ21+ψ2σ22+ψ3σ23)+C (ψ1σ31+ψ2σ32+ψ3σ33)]

]
.
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3.3. Bayesian Estimators Under General Entropy Loss Function

(1) The Bayesian estimator of the shape parameter λ is given by

λ̂Gentropy =
[
E
(
λ−q

)]−1

q ,

provided that E (λ−q) exists. Substitute in the equation (3.3), ψ = λ−q, the
Bayesian estimator of the parameter λ is given by

λ̂Gentropy ≈

λ
−q − qλ−(q+1) (Q1σ11 +Q2σ12 +Q3σ13) +

(
(q + 1) qλ−(q+2)

)
2

σ11

−qλ
−(q+1)

2
(Aσ11 +Bσ21 + Cσ31)


−1

q

.

(2) Substitute in the equation (3.3), ψ = η−q, the Bayesian estimator of the shape
parameter η is given by

η̂Gentropy ≈

η
−q − qη−(q+1) (Q1σ21 +Q2σ22 +Q3σ23) +

(
(q + 1) qη−(q+2)

)
2

σ22

−qη
−(q+1)

2
(Aσ12 +Bσ22 + Cσ32)


−1

q

.

(3) Substitute in the equation (3.3), ψ = κ−q, the Bayesian estimator of the shape
parameter κ is given by

κ̂Gentropy ≈

κ
−q − qκ−(q+1) (Q1σ31 +Q2σ32 +Q3σ33) +

(
(q + 1) qκ−(q+2)

)
2

σ33

−qκ
−(q+1)

2
(Aσ13 +Bσ23 + Cσ33)


−1

q

.

(4) Substitute in the equation (3.3), ψ = R(t)−q, the Bayesian estimator of the
reliability function R(t) is given by

R̂Gentropy (t) ≈(R (t))−q + (ψ1a1 + ψ2a2 + ψ3a3 + a4 + a5) +
1
2

 A (ψ1σ11 + ψ2σ12 + ψ3σ13)
+B (ψ1σ21 + ψ2σ22 + ψ3σ23)
+C (ψ1σ31 + ψ2σ32 + ψ3σ33)

−1

q

.

(5) Substitute in the equation (3.3), ψ = H(t)−q, the Bayesian estimator of the
hazard rate function H(t) is given as

ĤGentropy (t) ≈(H (t))−q + (ψ1a1 + ψ2a2 + ψ3a3 + a4 + a5) +
1
2

 A (ψ1σ11 + ψ2σ12 + ψ3σ13)
+B (ψ1σ21 + ψ2σ22 + ψ3σ23)
+C (ψ1σ31 + ψ2σ32 + ψ3σ33)

−1

q

.

(6) Substitute in the equation (3.3), ψ = H⋆(t)−q, the Bayesian estimator of the
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reversed hazard rate function H⋆(t) is given as

Ĥ⋆
Gentropy (t) ≈(H⋆ (t))−q + (ψ1a1 + ψ2a2 + ψ3a3 + a4 + a5) +

1
2

 A (ψ1σ11 + ψ2σ12 + ψ3σ13)
+B (ψ1σ21 + ψ2σ22 + ψ3σ23)
+C (ψ1σ31 + ψ2σ32 + ψ3σ33)

−1

q

.

4. Simulation studies

In this section, we conduct a Monte Carlo simulation study to compare the performance
of various estimates developed in the previous sections. A large number (10000) of
progressive first-failure censored samples are generated from the model (2.1). These
generated samples are of varying group sizes k = 3; 6; number of groups in a sample
n = 50; 80 and effective sample sizes m = 25; 40 out of n and different combinations
of progressive censoring schemes R. The study includes the following steps:

(1) Generate a progressive first-failure censored sample using algorithm proposed
by Balakrishnan and Sandhu (1995) from model (2.1) for given values of
(k, n,m,R) .

(2) Calculate the maximum likelihood estimates of λ, η, κ, R(t), H(t), and H⋆(t).
according to Section 2.

(3) According to Section 3, obtain the Bayes estimates of λ, η, κ, R(t), H(t), and
H⋆(t).

(4) Repeat the steps (1)− (3), (10000) times, for different values of (k, n,m,R) .

We consider the estimation average =

10000∑
i=1

θ̂i

10000 and the mean square error =

10000∑
i=1

(θ̂i−θ)
2

10000 ,

where θ is the parameter and θ̂ is its estimator. Extensive computations are performed
using Mathematica 11. Note that, since the non-linear equations (2.3) are not solvable
analytically, numerical methods can be used, as Newton Raphson method with initial
values closed to real values of the parameters.
Throughout this section we will use the following abbreviations:

(1) MSEs : The mean square errors,
(2) ML : The estimate by using the MLE,
(3) BSq : The estimate under squared error loss function,
(4) BLx,c=3: The estimate under linex loss function at c = 3,
(5) BLx,c=6: The estimate under linex loss function at c = 6,
(6) BGe,q=4: The estimate under general entropy loss function at q = 4,
(7) BGe,q=8: The estimate under general entropy loss function at q = 8.
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Table 1. Average values of the estimates and the corresponding MSEs, given in parentheses of the parameters λ, η, κ;

when λ = 1.2, η = 0.7, κ = 0.9, ζ1 = 2, ν1 = 3, ζ2 = 2, ν2 = 3 and ζ3 = 2, ν3 = 3

BLx,c=3 BLx,c=6 BGe,q=4 BGe,q=8 BSq ML Scheme (k, n,m)

The average estimates of λ (attached with the MSEs)

1.35943

(0.02185)

1.30941

(0.02141)

1.40031

(0.03641)

1.68111

(0.18061)

1.4565

(0.17681)

1.27794

(0.02140)

1.27847

(0.00439)

1.2571

(0.02451)

1.25570

(0.00192)

1.19889

(0.00017)

1.2241

(0.00261)

1.23664

(0.00060)

1.31227

(0.00003)

1.2730

(0.00004)

1.26891

(0.00005)

1.25972

(0.05447)

1.2469

(0.04381)

1.22818

(0.04018)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

1.32198

(0.01207)

1.29566

(0.00696)

1.3479

(0.02511)

1.37245

(0.03721)

1.37622

(0.02725)

1.39251

(0.04371)

1.25392

(0.00174)

1.25811

(0.00210)

1.29431

(0.00579)

1.2263

(0.00020)

1.22871

(0.00271)

1.22994

(0.00489)

1.26055

(0.00006)

1.27265

(0.00007)

1.2841

(0.00893)

1.23427

(0.02233)

1.24206

(0.02095)

1.25741

(0.03192)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

The average estimates of η (attached with the MSEs)

0.76091

(0.00291)

0.75341

(0.00187)

0.76737

(0.000364)

0.75498

(0.002281)

0.74312

(0.002270)

0.76835

(0.00375)

0.73010

(0.00053)

0.72110

(0.00413)

0.73024

(0.00054)

0.71703

(0.00011)

0.71320

(0.00012)

0.72221

(0.00023)

0.77172

(0.00419)

0.75184

(0.00325)

0.75141

(0.00196)

0.73353

(0.01630)

0.72161

(0.01420)

0.72486

(0.02153)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

0.74138

(0.00117)

0.75275

(0.00207)

0.75481

(0.00317)

0.73562

(0.00081)

0.72147

(0.00020)

0.73025

(0.00031)

0.72330

(0.00026)

0.73750

(0.00092)

0.73121

(0.00081)

0.70887

(0.00042)

0.69853

(0.00007)

0.70817

(0.00067)

0.73371

(0.00071)

0.75753

(0.00253)

0.75042

(0.00194)

0.71713

(0.00979)

0.73562

(0.00989)

0.72994

(0.00874)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

The average estimates of κ (attached with the MSEs)

1.00307

(0.00878)

0.96402

(0.00671)

0.99701

(0.00770)

0.92720

(0.00032)

0.92511

(0.00031)

0.92189

(0.00016)

0.97195

(0.00392)

0.95410

(0.00291)

0.95800

(0.00238)

0.89376

(0.00078)

0.90123

(0.00054)

0.88004

(0.00083)

1.04754

(0.01912)

0.99841

(0.00942)

1.00548

(0.00925)

0.98601

(0.03760)

0.94261

(0.02541)

0.95995

(0.03975)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

0.96374

(0.00297)

0.95893

(0.00247)

0.96942

(0.00346)

0.93341

(0.00059)

0.91475

(0.00003)

0.93682

(0.00042)

0.94441

(0.00124)

0.94267

(0.00112)

0.95320

(0.00294)

0.90890

(0.00001)

0.89346

(0.00024)

0.91862

(0.00943)

0.96633

(0.00325)

0.97462

(0.00427)

0.97642

(0.00541)

0.94035

(0.01567)

0.94319

(0.01734)

0.95320

(0.02412)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

From Tables 1 and 2, we observe that the MLE and Bayes estimates of the pa-
rameters λ, η, κ, the reliability, hazard rate, and reversed hazard rate functions are
very good in terms of MSEs. As the number of groups n and effective sample size m
increase, MSEs of all estimates decrease as expected. Also, as the value of the group
size k increases, MSEs decrease. In general, the Bayesian estimators have MSEs less
than that of the MlE. Bayes estimates using gamma informative prior are better as
they include prior information than MLE in terms of MSEs.

5. Conclusion

In this paper, assuming a good lifetime model we consider the problem of estimating
the unknown parameters λ, η, κ, as well as the reliability, hazard rate, and reversed
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Table 2. Average values of the estimates and the corresponding MSEs, given in parentheses of the relaibility, hazard rate

and reversed hazard rate functions; when λ = 1.2, η = 0.7, κ = 0.9, ζ1 = 2, ν1 = 3, ζ2 = 2, ν2 = 3 and ζ3 = 2, ν3 = 3

BLx,c=3 BLx,c=6 BGe,q=4 BGe,q=8 BSq ML Scheme (k, n,m)

The average estimates of relaibility function R(t=2)=0.166423 (attached with the MSEs)

0.17912

(0.00214)

0.16543

(0.00147)

0.16843

(0.01540)

0.16941

(0.00211)

0.16698

(0.00741)

0.16979

(0.00857)

0.16720

(0.00203)

0.16842

(0.00427)

0.16851

(0.07024)

0.16689

(0.00041)

0.16659

(0.00864)

0.16791

(0.00135)

0.17941

(0.00433)

0.16942

(0.00124)

0.17241

(0.00752)

0.16748

(0.00361)

0.16710

(0.02612)

0.16251

(0.04215)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

0.16743

(0.00324)

0.16841

(0.00126)

0.16794

(0.09471)

0.16681

(0.00331)

0.16645

(0.00011)

0.16710

(0.08110)

0.16654

(0.00421)

0.16643

(0.00034)

0.16842

(0.00573)

0.16632

(0.00362)

0.166394

(0.00056)

0.16857

(0.00446)

0.16942

(0.00446)

0.166871

(0.00157)

0.16998

(0.00841)

0.16695

(0.00652)

0.16742

(0.00872)

0.16773

(0.00492)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

The average estimates of hazard rate functionH(t=2)=0.427115 (attached with the MSEs)

0.49871

(0.00762)

0.46422

(0.00696)

0.54213

(0.00624)

0.49431

(0.00834)

0.45873

(0.02725)

0.48681

(0.00513)

0.54468

(0.00091)

0.45991

(0.00027)

0.46841

(0.00134)

0.49937

(0.00432)

0.48231

(0.00295)

0.47332

(0.00298)

0.50241

(0.00230)

0.49701

(0.00121)

0.49941

(0.02567)

0.46942

(0.01342)

0.45881

(0.00298)

0.47814

(0.00247)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

0.46834

(0.03801)

0.45256

(0.00003)

0.47891

(0.00269)

0.48781

(0.00078)

0.46866

(0.00004)

0.48976

(0.00094)

0.46284

(0.00321)

0.42644

(0.00002)

0.47792

(0.00243)

0.47684

(0.00878)

0.42948

(0.00002)

0.46987

(0.00392)

0.49203

(0.02461)

0.45791

(0.00045)

0.49921

(0.03760)

0.44682

(0.01325)

0.43245

(0.03221)

0.45689

(0.00475)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

The average estimates of reversed hazard rate functionH*(t=2)=0.0852734 (with the MSEs)

0.1289

(0.02968)

0.0384

(0.000841)

0.13874

(0.02311)

0.10941

(0.09823)

0.04891

(0.00712)

0.11874

(0.02461)

0.19987

(0.09948)

0.05979

(0.00324)

0.09987

(0.01243)

0.09872

(0.06289)

0.06871

(0.07862)

0.05481

(0.00942)

0.0241

(0.06819)

0.06681

(0.03421)

0.03394

(0.01265)

0.10993

(0.04871)

0.05481

(0.00524)

0.10024

(0.09461)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

0.09948

(0.00245)

0.08923

(0.00004)

0.08894

(0.00254)

0.08947

(0.07077)

0.09321

(0.00871)

0.09861

(0.01540)

0.07689

(0.05947)

0.085241

(0.00001)

0.09783

(0.00528)

0.07681

(0.00397)

0.085121

(0.00001)

0.08932

(0.00542)

0.06814

(0.00869)

0.08687

(0.00022)

0.07812

(0.00342)

0.09841

(0.00620)

0.08873

(0.00364)

0.08931

(0.00184)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

hazard rate functions using progressive first-failure censored samples. This censoring
scheme has advantages in terms of reducing test time, in which more items are used but
onlym of (k×n) items failed. We derived MLE and Bayes estimators of the parameters
λ, η, κ, the reliability, hazard rate, and reversed hazard rate functions using gamma
informative priors, under both symmetric (squared error) and asymmetric (linex and
general entropy) loss functions. These estimates cannot be obtained in closed form, but
can be computed numerically. It is clear that the proposed Bayes estimators perform
very well for different n andm. Also the Bayes estimators based on gamma informative
priors perform much better than the MLE in terms of MSEs. The simulation also
stresses the importance of linex and general entropy loss functions as asymmetric loss
functions, in the case studied.
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