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Abstract: The paper delivers a multistate, continuous, nonhomogeneous Markov chain
to present a COVID19 stressed probability of default (PD) model for banks. First it analyzes
the theoretical and methodological considerations of bank failure. Then it provides a
comprehensive review of earlier empirical bank failure models published in literature. It
makes the case for a multistate model design, which has numerous advantages over the
conventional binary classification techniques. A formal description of Markov chain
modeling is followed by the detailed presentation of empirical model development.
Eventually it estimates PDs for a fiveyear forecast horizon with the developed model
reflecting COVID19 crisis impacts.
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Introduction

Failure prediction is a wellestablished, widely studied, extensively researched
subject for theoretical and empirical studies. In particular, corporate failure
has been a research focus for a long time. From methodological point of view,
bank failure prediction is similar to corporate failure prediction, however, fewer
data, fewer default observations and different model variables generate
considerable research challenges.

The financial health of the banking industry is an important prerequisite
for economic stability and growth. For banks, the COVID19 crisis could
probably result in repayment difficulties for many of their clients due to
defaults, restructurings or deferred payments. Profitability and capital
adequacy are anticipated to decline.

Under such circumstances, substantially growing number of bank failures
can be expected compared to the normal years, which makes it necessary to
prepare such a bank failure model that manages the impacts of COVID19
crisis.

The paper delivers a multistate, continuous, nonhomogeneous Markov
chain to present a COVID19 stressed probability of default (PD) model for
banks. First it analyzes the theoretical and methodological considerations of
bank failure. Then it provides a comprehensive review of earlier empirical

Asian Journal of Economics and Finance. 2021, 3, 1 : 157-171 ARF INDIA
Academic Open Access Publishing
www.arfjournals.com



158 Asian Journal of Economics and Finance. 2021, 3, 1

bank failure models published in literature. It makes the case for a multistate
model design, which has numerous advantages over the conventional binary
classification techniques. A formal description of Markov chain modeling is
followed by the detailed presentation of empirical model development.
Eventually it estimates PDs for a fiveyear forecast horizon with the developed
model reflecting COVID19 crisis impacts.

Theoretical and methodological considerations

The financial health of the banking industry is an important prerequisite for
economic stability and growth.Since the banking system plays an important
role in a country’s economic development, a banking crisis might generate
serious disruptions of a country’s economic activities. Accordingly, it can be
argued that reliable bank failure prediction can diminish potential real
economy problems.

Failure prediction is a wellestablished, widely studied, extensively
researched subject for theoretical and empirical studies. In particular, corporate
failure has been a research focus for a long time. One of the fundamental
questions of management and organization sciences is why certain
organizations survive, whereas others disappear (Kristóf and Virág 2019).

In recent decades substantial number of publications have emerged in
literature in the fields of business failure, corporate survival, bankruptcy
prediction, organizational mortality, financial distress, default prediction and
credit scoring, which might seem to be at first glance different things; however,
it is a mutual effort of them that they attempt to predict the occurrence of a
failure event with the help of descriptive variables by applying similar methods
(Kristóf and Virág 2020). It can be argued that bank failure is relatively
neglected in literature having corporate failure dominance,despite the fact
that bank defaults might generate substantially higher problems in economy
and society than the default of certain companies.

From methodological point of view, bank failure prediction is similar to
corporate failure prediction; however, since much less banks operate in the
world than companies, it necessarily leads to fewer data, in particular fewer
default observations. Model variables are also different in case of bank failure
prediction because of different performance indicators. The variablefamily
of bank indicators applied in rating and failure prediction are widely called
as CAMEL expressing Capital adequacy, Assets, Management Capability,
Earnings, Liquidity and Sensitivity (Rahman and Islam 2017).

Credit risk is the risk of a loss arising from the failure of a counterparty to
honor its contractual obligations (McNeil et al. 2015). It incorporates both
default risk, namely the risk of losses due to the default of a borrower or a
trading partner, and downgrade risk, which is the risk of losses caused by a
deterioration in the credit quality of a counterparty that translates into a
downgrading in a rating system.
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Credit risk analysis of financial instruments is a central issue of finances
from theoretical and empirical points of view. One of the most important
research fields, which is at the same time the fundamental credit risk parameter
of the debtors, is the PD.

In recent decades, there have been several developments in the field of
credit risk modeling, from which two methodological approaches are relevant
for the current topic. ‘Default’ models apply classification techniques to
estimate the probability that a borrower will default; that is, the borrower will
not make any more payments under the original lending agreement. In
contrast, ‘multistate’ models estimate the probability that the borrower’s credit
quality will change, including a change to default status. Accordingly, PD can
be quantified both from average PDs mapped to rating classes, or by using
statistical PD estimation models.

When selecting the proper model to estimate PD, an important element is
the horizon over which credit losses are measured. As an industrial standard,
PD models have traditionally been elaborated using cross sectional or some
years of historical data, applying multivariate statistical classification methods,
estimating PD mostly for oneyear horizon. It has a rich literature and empirical
results (see inter alia Virág and Fiáth 2010; Nyitrai and Virág 2017; Kristóf
and Virág 2019; Nyitrai 2019; Nyitrai and Virág 2019; Kristóf and Virág 2020).

Since the introduction of International Financial Reporting Standards
(IFRS)9, emphasis has been laid on the timely recognition of credit losses.
The forwardlooking impairment model of IFRS9 has called for the
quantification of lifetime credit losses, if significant credit risk deterioration
happens to the debtors, which gave impetus to develop the methodology and
practice of lifetime PD modeling (Kristóf and Virág 2017).

COVID19 pandemic has brought new challenges to accomplish lifetime
PD modeling in a forwardlooking way. It is generally true that crisis brings
uncertainty and negative impact on making financial forecasts (Jáki 2013a;
Jáki 2013b).

 For banks, the COVID19 crisis could probably result in repayment
difficulties for many of their clients due to defaults, restructurings or deferred
payments. As a result, nonperforming loans and riskweighted assets are
expected to rise. Risk aversion is likely to increase, resulting in more selective
financing. Profitability and capital adequacy are anticipated to decline.

Under such circumstances,substantially growing number of bank failures
can be expected compared to the normal years, which makes it necessary to
prepare such a bank failure model that manages the impacts of COVID19
crisis.

Bank failure prediction models in literature

Most publications in literature are oriented to research bank failure as a
negative phenomenon with focus on the events that precede their happening.
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In majority of cases, multivariate classification methods are applied to classify
banks into two groups discriminating the sound healthy banks from those
that are in difficulties (Zaghdoudi 2013).

The initial bank failure models were based on static, oneperiod
Multivariate Discriminant Analysis (MDA) and Logistic Regression (logit).The
first MDA bank failure model was published by Sinkey (1975), and the first
logit model by Martin (1977). For a comprehensive review of this period see
Dimitras et al. (1996).

In the 1980s static models were more and more replaced by multiperiod
models, and multiperiod logit models became dominant in bank failure
prediction (Shumway 2001). Thomson (1991) extensively researched bank
failures using such approach that took place in the United States (US) during
the 1980s.

It was realized in the 1990s that bank failure models needed to be slightly
different for emerging markets compared to developed banking industries.
GonzálezHermosillo et al. (1996) examined bank failures in Latin America by
using twostep survival or hazard analysis and duration models, and
developed different models for Latin American and US banks. Survival analysis
has become a popular method in bank failure prediction afterwards.

The Asian crisis of 1997 brought calls to strengthen the monitoring of
financial markets. Montgomery et al. (2005) investigated the causes of bank
failures in Japan and Indonesia, and developed a logit model to demonstrate
the usefulness of domestic bank failure prediction models through a cross
country model that allowed for crosscorrelation of the error terms.

Since the 1990s a great number of publications has recommended that
machine learning techniques perform more effectively than traditional
statistical techniques. Among machinelearning techniques, Artificial Neural
Network (ANN) and Support Vector Machine (SVM) have appeared to be the
most preferred tools in bank failure prediction.Tam and Kiang (1992) were
the first to apply ANNs to bank failure prediction and found that ANNs
outperformed any other earlier applied method. Since then several studies
have compared ANNs and statistical techniques to predict bank failure.

Kolari et al. (2002) developed an early warning system based on logit and
nonparametric Trait Recognition (TR) model for large US banks. Boyacioglu
et al. (2009) examined ANN, SVM and multivariate statistical methods to
predict the failure of Turkish banks. Result proved that the SVM achieved the
best accuracy.

The standard twostate prediction models were later extended into three
states (operational, atrisk and default) to achieve better prediction accuracy
(Halling and Hayden 2007).

Reboredo (2002) published the first Markov chain model for a probabilistic
evaluation of Spanish bank solvency that included heterogeneity and past
solvency. Bank solvency positions were obtained from the values of a stochastic
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recursive profit function. A year later Glennon and Golan (2003) developed an
earlywarning bank failure model designed specifically to capture the dynamic
process underlying the transition from financially sound to closure. The authors
modeled the transition process as a stationary Markov model and based on
US chartered bank data estimated the transition probabilities using a
Generalized Maximum Entropy (GME) estimation technique.

Kumar and Ravi (2007) published a comprehensive review of the
application of statistical and intelligent techniques to solve the bankruptcy
prediction problem faced by banks and firms starting from the appearance of
the first MDA models until 2005. The review was categorized by taking the
type of technique applied to solve the failure prediction problem as an
important dimension.

Poghosyan and Cihák (2009) carried out a research in European Union
(EU) with financial data from the period of 19972007. Beyond the relevance
of the accustomed predictors, based on several logit models, it was concluded
that contagion effects were important when predicting EU bank failures, which
means that the PD of a bank is higher if there is a recent failure in a bank with
similar size in the same country.

After the outbreak of the previous financial crisis a great number of
publications have applied the earlier analyzed techniques to more recent data
on bank failures during the financial crisis. Interesting conclusions were drawn
regarding the reasons for bank failure that not much changed compared to
earlier findings. Cole and White (2012) applied a standard early warning model
approach to 263 US banks that either failed or were technically insolvent in
2009, and concluded that the basic drivers of bank financial performance and
failure during the financial crisiswere similar to the drivers of bank
performance and failure during earlier industry downturns. Fahlenbrach et
al. (2012) arrived at similar conclusions. Wang and Cox (2013) examined why
commercial banks in the US failed in the recent financial crisis from the aspect
of risk taking by the financial institutions.

Wang et al. (2016) developed a selforganizing neural fuzzy inference
system to predict bank failure using the experience of 3635 US banks over a
21year period. The experimental results of the model were encouraging in
terms of both accuracy and interpretability when benchmarked against other
prediction models.

Tanaka et al. (2016) developed a Random Forestbased early warning
system for predicting bank failures. Banklevel financial statements were
analyzed to find patterns that identify banks in danger of failing. Experimental
results showed that Random Forests outperformed conventional methods.

Cox et al. (2017) employed the Cox proportional hazards model to forecast
US bank failures during the financial crisis period of 2008 to 2010. The study
provided a great contribution in enduring bank attributes that can reduce the
likelihood of failure.
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Le and Viviani (2018) compared the accuracy of traditional statistical and
machine learning techniques to predict the failure of banks using a sample of
3000 US banks. The empirical result revealed that ANNs and knearest neighbor
(KNN)were the most reliable methods to predict bank failure.

Audrino et al. (2019) applied a generalized logit model together with mixed
data sampling to improve the accuracy in predicting US bank failures.
Applying the model on data from the period of 20042016 substantially better
result was achieved compared to the accuracy of classic logit model, in
particular for longterm forecasting horizons.

Shrivastava et al. (2020) created a machine learning based bank failure
model for Indian banks using data from 20002017. To handle the problem of
low number of failed banks, the Synthetic Minority Oversampling Technique
(SMOTE) was used. Redundant features were reduced by Lasso regression.
To avoid bias and overfitting, Random Forest and Ada Boost techniques were
applied and compared to the logit to get the best predictive model.

Manthoulis et al. (2020) explored the predictive power of attributes of US
banks that described the diversification of banking operations, considered the
prediction of failure in a multiperiod context, and introduced an enhanced
ordinal classification framework (multiple criteria decision analysis, statistics,
machine learning and ensemble methods). Results proved that both
diversification attributes and ordinal classification provided better prediction.

After studying various literature and empirical models, the multistate
Markov chain approach was selected to develop a COVID19 stressed lifetime
PD model for banks. A multistate model design has the advantage over the
conventional binary classification techniques that it can capture the failure
phases of transition process over several states, and it is also more efficient to
prepare longterm forecast. The formal description of the method is provided
in the following chapter.

Markov chain modeling

Markov processes are named after a Russian mathematician, Andrey
Andreyevich Markov, who dealt with stochastic processes in the early 20th
century (Siekelova et al. 2019). Modern probability theory studies chance
processes for which the knowledge of previous outcomes influences
predictions for future experiments (Spahn 2017). In the Markov process, the
result of the current experiment affects the result of the experiment in the
future.

According to our best knowledge, Cyert et al. (1962) published the first
Markov chainbased failure model for accounts receivables. Consideration
behind the application of discrete Markov chain was the fact that accounts
receivables month by month migrated among different delinquency
states. Movements among delinquency states were described by transition
matrices.
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The study of Jarrow et al. (1997) represented a milestone in literature that
elaborated a continuous Markov chain model for corporate bonds, taking into
account the credit rating. Changes of credit rating formulated the states of the
Markov chain. The transition matrix expressed the probability of remaining
in the existing rating class, and the migration to other rating classes.

Within the framework of a comparative analysis, Lando and Skodeberg
(2002) compared the performance of the continuous multistate Markov model
to the traditional, cross sectional, discrete Markov model. The authors
concluded that the continuous model outperformed the discrete model. Since
generator matrix construction is a key issue in developing continuous Markov
models, several publications have dealt with the optimization problem of the
matrix logarithm (Zhang 2019).

A problem of applying Markov chain in practice emerged from the
observation that the behavior of data modeled by Markov chain is often non
homogeneous. Bluhm and Overbeck (2007) generated PD term structures using
homogeneous and nonhomogeneous, continuous Markov chains, and
compared the results to the fifteen years of cumulated actual default rates
published by Standard&Poors. Results with the nonhomogeneous model were
much better, from which it was concluded that the homogeneity assumption
could be set aside.

A series of random variables formulate a Markov chain, if an observation
is in any period in an initial ith state, and the probability that it migrates to a
jth state in the next period, exclusively depends on the value of i. Let
denote the series of random variables with {1, 2, …, K} fixed number of classes,
where K denotes the default state. The series is a finite first order Markov
chain, if:

P(X
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 = j|X
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 = x

0
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, X
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matrices are identical in each time. In this case, any multiperiod transition
matrix can be calculated by raising the annual transition matrix to power:
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In case of continuous Markov chain, a transition matrix between 0th and
tth period can be estimated by exponentiating the generator matrix. G
generator matrix is such a K×K matrix, where:
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P(0, t) = exp(Gt) (4)

The generator matrix has the following characteristics:
• G

i,j 
= 0 for each i � j

• G
i,i
 = –�

j�i
 G

i,j

The elements of the generator matrix relate to the time spent in each rating
class. The remaining time in ith class can be characterized by exponential
distribution having –G

i,i
 parameter. Timely homogeneous probabilities of

transitions in any horizon can be expressed in the function of the same
generator matrix. However, in case of nonhomogeneous transitions, the
generator matrix depends on time, and can be formulated as follows:

0(0, ) exp ( )tP t G t dt (5)

Idiosyncrasies of continuous, nonhomogeneous Markov chain enable the
flexible interpolation of parameters, even when the research challenge is how
to estimate stressed lifetime PDs amid COVID19 circumstances by a Markov
chain starting from a longrun historical average transition matrix.

Empirical research

In Markov chain modeling the first research task is to construct a transition
matrix based on observed changes of states. In case of credit risk modeling it
generally means an annual transition matrix, reflecting the change in rating.
For the purposes of the current research, the transition matrix of Standard &
Poors (S&P) was applied. S & P maintains a rich historical database containing
the rating changes, defaults and recoveries of global financial services issuers
rated by S&P. Within global financial services issuers S&P defines banks as
bank holding companies, bank subsidiaries, savings and loans, credit unions
and governmentrelated entities (S & P 2019). At the time of writing this paper,
the most recent transition matrix for banks has been available for the period
of 19812018.

Table 1: Global average annual transition rates for banks (19812018)

 AAA AA A BBB BB B CCC/C Not rated Defaulted

AAA 82.99% 10.79% 0.83% 0.21% 0.21% 0.00% 0.00% 4.98% 0.00%

AA 0.26% 86.46% 9.06% 0.37% 0.00% 0.00% 0.00% 3.85% 0.00%

A 0.03% 2.13% 87.63% 4.55% 0.25% 0.05% 0.00% 5.31% 0.04%

BBB 0.00% 0.28% 4.33% 83.69% 3.93% 0.43% 0.02% 7.16% 0.16%

BB 0.00% 0.13% 0.09% 6.40% 75.94% 5.74% 0.67% 10.40% 0.62%

B 0.00% 0.00% 0.06% 0.24% 7.16% 78.34% 2.61% 8.80% 2.79%

CCC/C 0.00% 0.00% 0.00% 0.00% 0.86% 21.46% 49.36% 16.31% 12.02%

Not rated 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Defaulted 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Source: S&P (2019), p. 41
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For further calculations it is necessary to handle the problem of withdrawn
rating (‘Not rated’ in case of S&P). Assuming that withdrawn rating does not
mean upgrading or downgrading, the matrix has been normalized by simple
scaling. The sum of total rows are 100% in each line.

Table 2: The normalized transition matrix

 AAA AA A BBB BB B CCC/C Defaulted

AAA 87.33% 11.36% 0.87% 0.22% 0.22% 0.00% 0.00% 0.00%
AA 0.27% 89.92% 9.42% 0.38% 0.00% 0.00% 0.00% 0.00%
A 0.03% 2.25% 92.55% 4.81% 0.26% 0.05% 0.00% 0.04%
BBB 0.00% 0.30% 4.66% 90.14% 4.23% 0.46% 0.02% 0.17%
BB 0.00% 0.15% 0.10% 7.14% 84.77% 6.41% 0.75% 0.69%
B 0.00% 0.00% 0.07% 0.26% 7.85% 85.90% 2.86% 3.06%
CCC/C 0.00% 0.00% 0.00% 0.00% 1.03% 25.64% 58.97% 14.36%
Defaulted 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

The PD of each rating category is reflected by the probability of transition
to the defaulted rating category. If the classification of banks were already
defaulted in the initial period of transition, both annual and lifetime PD of
such banks are 100%. The defaulted classification is absorbing state, regardless
of the fact where the migration is from.

For continuous Markov chain modeling, it is essential to construct a
generator matrix. It is easy to see that neither the simple root nor the logarithm
of the annual transition matrix is in itself appropriate, because the requirements
of generator matrix are not necessarily met,and negative results might arise.
The empirical transition matrix might in itself possess such properties that
exclude the existence of a generator matrix, and the same transition matrix
might be resulted starting from more generator matrices (Israel et al. 2001).

Within the framework of this empirical research, an approximated
generator matrix has been elaborated applying the regularization procedure
published by Kreinin and Sidelnikova (2001) guaranteeing very good fit to
the transition matrix considering Euclidean distance.

The first step of regularization is to take the natural logarithm of the annual
transition matrix, which was done in R plus. Where negative values were
resulted apart from the diagonal, they were substituted with zero, so an initial
G matrix was received. To achieve that the generator matrix contains zero
sums of rows, nonpositive diagonal values and nonnegative nondiagonal
values, the rows of the matrix were modified considering the relative

contribution of each element (Kreinin and Sidelnikova ibid.), formulating a �G
matrix, the elements of which were calculated as follows:

� 1

1

| |
| |

N
j ij

ij ij N
j ij

g
g g

g (6)
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The difference of the two matrices gives �G  generator matrix, in which the
sums of rows are zero:

�Ĝ G G (7)

Table 3: The applied generator matrix

 AAA AA A BBB BB B CCC/C Defaulted

AAA 13.57% 12.81% 0.30% 0.21% 0.25% 0.00% 0.00% 0.00%
AA 0.30% 10.78% 10.32% 0.15% 0.00% 0.00% 0.00% 0.00%
A 0.03% 2.46% 8.00% 5.26% 0.17% 0.04% 0.00% 0.04%
BBB 0.00% 0.27% 5.10% 10.71% 4.83% 0.35% 0.00% 0.16%
BB 0.00% 0.15% 0.00% 8.17% 17.13% 7.35% 0.90% 0.56%
B 0.00% 0.00% 0.07% 0.00% 9.22% 16.22% 3.96% 2.96%
CCC/C 0.00% 0.00% 0.00% 0.00% 0.00% 35.90% 53.81% 17.90%
Defaulted 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

In line with the assumption system of the continuous Markov chain,
probabilities of transitions for – even fractional – terms can be estimated, by
exponentiating the generator matrix to the desired power. However, to ensure
the flexibility that the estimated PD term structure well reflects the crisis
situation caused by the COVID19 pandemic, a nonhomogeneous Markov

chain was developed. The starting point was the Ĝ  generator matrix, however,,

it was not assumed that the transitions were identical, and a timely dependent
generator was applied:

ˆ ˆ( )tC t G (8)

where × is matrix multiplication and 1 ,( ) ( ( ))ij i j Kt t  is such a K×K diagonal

matrix, where:

,

0
( )

( )ij

if i j
t

t if i j (9)

��,�(t) can be formulated in the function of nonnegative � and � parameters
per rating class as follows (Bluhm and Overbeck 2007):

1

,

(1 )
( )

1

te t
t

e
(10)

In case of t = 1 the diagonal matrix purely consists of ����(1) = 1. In the
numerator (1 – e–�t) denotes the exponential distribution of the random variable,
while t�–1 serves for convexity or concavity adjustment. Hence, both the
flexibility of parameter selection and the application of wellknown functions
from probability theory are met. By proper selection of � and � parameters,
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the generator matrix can interpolated to stressed default rates, achieving
satisfactory estimation accuracy.

To optimize � and � parameters the empirical bank default rates of S&P
were stressed considering the experiences from the previous financial crisis.
The longterm average annual default rates per rating classes from the period
of 19812018 were multiplied by stress factors derived from the worst year of
the previous financial crisis. Such data was available at S&P only at an
aggregated level for the whole financial service sector, which is a broader
category than banks.It was assumed that the crisis impact for the total financial
service sector well reflected the behavior of banks.

In the AAA rating class no default event happened between 19812018,
accordingly no stress multiplier was applied. For AA, A, BBB and BB ratings
the 2008 actual default rates were related to the longterm averages, because
2008 was the worst year for these ratings in the previous financial crisis. For
the same reason, the 2009 actual default rates were applied for B and CCC/C
ratings. The below table summarizes the stress factors.

Table 4: The applied stress factors

Stress multiplier Method

AAA 1.000 no historical default
AA 13.875 2008 to longterm average
A 8.192 2008 to longterm average
BBB 5.500 2008 to longterm average
BB 2.209 2008 to longterm average
B 3.167 2009 to longterm average
CCC/C 1.526 2009 to longterm average

During optimization the monotonically increasing cumulated PDs, the
accurate estimation of default rates, and the realistic reflection of COVID19
effects also played important role. The nonlinear optimization was done using
the Generalized Reduced Gradient (GRG) method, parameterized in such a
way to achieve as accurate as possible result in the third year. The following
table summarizes the so optimized parameters.

Table 5: The optimized parameters

� �

AAA 1.0673 0.8778

AA 0.8827 1.3696

A 0.7638 1.4869

BBB 0.4118 4.3784

BB 0.7580 0.8132

B 0.6670 1.1319

CCC/C 1.0906 0.5611
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Bank PDs were estimated in a five years of forecast horizon per rating
class. Results are presented in the below chart. Compared to the S&P empirical
average historical default rates from the period of 19812018, significantly
higher PDs were resulted, which is a consequence of applying the stress factors
expressing the COVID19 crisis impact.

Figure 1: Estimated PDs and empirical default rates

Source: PDs – own calculations; default rates – S&P (2019)

Conclusions

The financial health of the banking industry is an important prerequisite for
economic stability and growth. In particular, amid COVID19 circumstances,
reliable bank failure prediction is of growing interest.

The first bank failure prediction model was published in 1975. Since then
a great development history has taken place with regard to research questions,
methodological developments and empirical results. From methodological
point of view, bank failure prediction is similar to corporate failure prediction;
however, fewer data, fewer default observations and different model variables
generate considerable research challenges, especially when preparing such a
bank failure model that can manage the impacts of COVID19 crisis.

Within the framework of the current empirical research, a multistate,
continuous, nonhomogeneous Markov chain has been developed to present
a COVID19 stressed lifetime PD model for banks. A multistate model design
has the advantage over the conventional binary classification techniques that
it can capture the failure phases of transition process over several states, and
it is also more efficient to prepare longterm forecast.

Bank PDs were estimated in a five years of forecast horizon per rating
class. Compared to the S&P empirical average historical default rates from
the period of 19812018, significantly higher PDs were resulted, which is a
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consequence of applying the stress factors expressing the COVID19 crisis
impact.
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