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Abstract: In the article a new version of the method called Exact Individual Trajectories
Method (EIT),used for the management of pension funds, is introduced and tested for
quantification of the annual premium need to finance a longterm care insurance system.
This method developed on an axiomatic basis and is an alternative to the already known
multiple state valuation models based on Markov and semiMarkov stochastic processes
and methods of actuarial present value. The EIT is formulated on an individual basis
which takes into account, for a hypothetical insured person, the set of all possible future
life events, called feasible trajectories. In the articlesome numerical results are also presented.

Keywords: longterm care system; ageing; insurance protection products.

1. INTRODUCTION

The main factors characterising Italian (and European) population trends
from the socio-demographic point of view, including in the first place
demographic ageing, but also the decline of the extended family with a rise
in the rate of working women, are prompting growing interest in LTC
insurance policies, and greater use of them can be expected in the future.

Inthe first part of this paper we introduce a new version of the Exact
Individual Trajectories Method (E.I.T.)[1], a time-discrete actuarial model,on
an axiomatic basis, introduced for the management of a pension fund. In
the second part of the paper this new version is applied for the quantification
of the cost of a long-term care insurance policy (standalone annuity) in
terms of the individual equilibrium premium. The method takes into
account thesetof all possible future life events of the insured person’s
position, i.e. the feasible trajectories. These trajectories are represented by
vectors formally expressed in term of states assumed by the insured person
and of the permanence time in each state, i.e. the duration. To each trajectory
corresponds a single probability in Markovian hypothesis.
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The components of each trajectory are transformed interms of financial
cash-flow: paid premiums by the insured person and care treatment by
insurance concern.

With aggregation of discounted cash flow vectors with relative
probabilities it is possible to assess the individual equilibrium premium.

With the E.I.T. actuarial model, and also assuming that the condition of
non-self-sufficiency cannot reverse but only, if anything, get worse, we can
describe, and thus consider for the purposes of economic assessment, all
the possible life stories of the individual, weighted according to the relative
probability of their coming about. We can also determine the cash flow for
each trajectory. The models for assessment of long-term care insurance
products and, in general, disability and related insurance (which includes
for example, permanent health insurance and critical illness insurance) to
be found in the literature are essentially of the multiple-state type  in which
the trend of the insured person’s position is governed by a Markovian
stochastic process. In these models we can, with Monte Carlo simulation,
determine a series of possible outcomes; the robustness of the results
obtained depending on the number of simulations performed. With an
increasing number of simulations the stability and mean value of the
outcomes converge towards the “true” value. In the case of E.I.T., given the
technical assumptions, the actuarial values take into account all the life
stories of individuals weighted according to the relative probability of
occurrence; thus, there is no uncertainty deriving from use of a simulation
process. It is also is an alternative to methods of actuarial present value in
which the results are provided in an aggregated manner.

Below a modified version of the E.I.T.is proposed, and in section 3 an
application for assessment of long-term-care insurance coverage.

2. NEW VERSION OF E.I.T.

2.1. Notation and corporative Si states

In the exact individual trajectory model the primary need is to define the
life-cycle of the insured person whose position is, in each year, specified by
the states it can take on (e.g. active/contributor, beneficiary of insurance/
social security supplied on the occurrence of certain events which depend
on the type of risk taken on by the insurer or social security system
concerned). One and only one state is to be assumed in each year.

We indicate with:

– X: age of the insured person at the start of assessment;
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– (� – 1): maximum age insured person can reach;
– S�{S1, S2, S3... SL}: the set of states that can be entered upon by the

insured person;
– S1: the state at the start of assessment;
– SL: the state corresponding to elimination of the position.
Given the set of natural numbers M1 ��{1,2,……, L} and the set of states

S ��{S1, S2, S3…, SL}, we hypothesise an order states induced by the natural
numbers defined thus:

1, : h kh k M S S h k (1)

The above order shows the reflexive, symmetric and transitive
properties and is, moreover, complete, insofar as the above relation is
defined for all the pairs considered, or in other words there are no pairs of
non-comparable states �S for which the above relation is not defined.

2.2. Feasible trajectory identification: definition and axiomatic basis

The trajectory is considered as the vector for �–x+1 components in which
the ith component is the state taken on by the position of the insured person
after i years and it is the index corresponding to the terminal component of
the trajectory, or in other words the component in which SL first appears
with it � � – x.

A feasible trajectory is an application �(�) of the set of natural numbers
M ��{0,1,2,……, �-x} to the ordered set of states (S)that satisfies the following
two axioms A1 e A2.

Based on axiom A1 :

, , ( ) ( )h ki j M se i j i S e j S h k

Function �(�) is, therefore, monotonous, non-decreasing from the set of
natural numbers to the set of states ordered as defined in (1).

On the basis of axiom A2 function � (�): M � S is such that:

�(0) = S1 and �(��– x) = SL

in which SL is the state of elimination of the position.

The above two axioms constitute the basis of the model as formulated
in the present work.

It will be seen that the following proposition follows from axiom A1.

if i ��M e �(i) = SL ���(j) = SL  �j: j � i
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2.3. Definition of the duration vector in the S states

In this section we introduce the notion of the vector of the permanence
time in each state, i.e. the “duration in each state”, there by modifying the
original design of E.I.T.

Let us take the case of a feasible generic trajectory generated by function
�(�); we then go on to define the set of Nk indexes, for k = 1,…, L associated
with each state taken on in this trajectory:

N1 = {i � M : �(�) = S1}

N2 = {i ��M : �(�) = S2 } (2)

N3 = {i ��M : �(�) = S3}

………………………..

NL = {i ��M : �(�) = SL }

It can readily be verified that the Nk, set for k = 1,…L as defined by (2)
show the following properties.

Properties of the Nk sets

a) The first and last set are nonempty.
This property follows from axiom A2.

b) The generic Nk set, if nonempty, is an interval of natural numbers that
can degenerate in one point alone.
In fact, for axiom A1it turns out that:
ifi, j � M with i � j and �(i) = �(j) then for  h ��M and i ��h � j it is �(i)
= �(h) = �(j);
Then for  Nk(nonempty), for k = 1,…L, i ��NK we thus have that:

min max
K Ki N i N

i i i

c) Given the indexes i and j, if i � Nh and j ��Nk and h < k �� i<j This
property follows from axiom A1 and from (2)

d)
1

L

h
h

N M�

It is demonstrated verifying that the first set is contained within the
second and vice versa, or in other terms:

h, if i�Nh then i ��M for (2)
i, if i � M then a state of axiom S is associated with it and, thus, through

the association given by [2] there exists one and only one Nh set to which
the above index i belongs.
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e) i, j ��M Ni � Nj =empty set.

This property follows from property b). In fact, if one of the two were
empty, the intersection would certainly be an empty set; if both were non
empty, they could have no points in common because it would mean that
they contemporaneously take on two different states, contrary to the design
of the model. We now go on to definition of vector t of duration in the states
associated with the same trajectory in the following recursive way:

1

1 2

1 2

1

2 1

1 1
...

1 1 2 2

max

............................

max

............................

max ... 1,...... 1

............................

... 1

h

i N

i N N

h h
i N N N

L t L

t i

t i t

t i t t h L

t i t t t

. (3)

– t1 = duration in the first state;
– t2= duration in the second state;
– th= duration in the hth state;
– tL-1= duration in state (L–1);
– it = index corresponding to the terminal component of the trajectory in

which state SLfirst appears, then it � NL.

We now go on to demonstrate that th � 0 per h = 1,....., L–1

From the last equality relation (see above) we derive: 
1

1

1
L

i t

i

t i

The generic trajectory being considered a feasible trajectory, set N1 is

certainly nonempty and 
 

0
1∈
=imin

Ni
 is thus, given (3) t1 ��0.

As for t2 is set N2 is empty, it comes to 0; in fact:

 
imax

NNi 2∪1∈
 = 

 
imax

Ni 1∈
 and thus for (3):

t2 = 
 

imax
NNi 2∪1∈

– t1 = 
 

imax
Ni 1∈

 - 
 

imax
Ni 1∈

 = 0



28 Massimo Angrisani and Emanuela Ostili

otherwise, if N2 is nonempty, it turns out that

t2 = 
 

imax
NNi 2∪1∈

 - t1 = 
 

imax
NNi 2∪1∈

 - 
 

imax
Ni 1∈

and, for the property c) of the Nk: sets t2>0. Thus, in general, t2 � 0

t3 = 
 

imax
NNNi 321 ∪∪∈

 - t1 – t2 = 
 

imax
NNNi 321 ∪∪∈

 - 
 

imax
NNi 2∪1∈

+ t1 - t1

If set N3 is empty t3 comes to 0; in fact:
 

imax
NNNi 321 ∪∪∈

 = 
 

imax
NNi 2∪1∈

Otherwise, if N3 is nonempty, the result is, for property c) of sets Nk:
t3>0. Thus t3 �� 0.

And so forth; then th � 0 per h = 1,....., L–2

From (3) we have:

tL-1= it – t1– t2 ….. – tL-2 – 1 = it – t1– t2 ….. – tL-3 – 
 

imax
LN...NNi 2-∪2∪1∈

 + (t1+t2 … + tL-3) – 1

Applying the appropriate simplifications, we obtain:

tL-1= it -
 

imax
LN...NNi 2-∪2∪1∈

 - 1

since it � NL and the latter is certainly nonempty, and so, for property c) of
sets Nk, we have:

it > 
 

imax
LN...NNi 2∪2∪1∈

And thus it – 
 

imax
LN...NNi 2-∪2∪1∈

 ��1

And thus, tL-1 � 0

And so forth; thus, th � 0 for h = 1,....., L – 1.

In the following section we demonstrate the correspondence by virtue
of which a feasible trajectory can be transformed into a duration vector in
the various states, as defined in (3).

2.4. Biunivocal correspondence between the feasible trajectories and the
duration vectors in S states

Every trajectory is in biunivocal correspondence with the durations in each
state. In fact, given a certain trajectory, the duration vector is uniquely
determined by (2) and (3); thus for two different trajectories, differing even
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in one single component, they correspond to two distinct duration vectors.
Given the duration vector, applying (3) the lower and upper indexes of
each NK set for k = 1,…L are determined univocally by virtue of the properties
of the NK sets and axiom A1; it is then possible, by means of (2), to identify
the corresponding feasible trajectory univocally.

We now identify set  1-L⊆RQ consisting of points P(Z1, Z2,.. Zi… ZL-1) -
with integer coordinates - which verify the following conditions:

1) Zi interi � 0 per i = 1,2… (L-2)

2) Z1 + Z2 + + ZL-1 � � – x (4)

3) ZL-1 � 1

The relation that associates points Q with the duration vector in S states
is defined by (5), thus:

Z1 = t1

Z2 = t2

....

  Zh     = thh = 1,...L–1 (5)

…………………

ZL-1 = tL-1 + 1

The representation theorem states that each feasible trajectory is in
biunivocal correspondence to a point in set Q identified by (4).

The association of trajectory with each point P(Z1, Z2,.. Zi… ZL-1) � Q
corresponds to an application �[P(Z1, Z2,.. Zi… ZL-1)](·): M  S;

In the first place, it is readily demonstrated that point P(Z1, Z2,.. Zi…ZL-1)
whose coordinates are defined by (5) belongs to Q - or in other terms (4)
applies - as will be argued below.

Since th � 0 applies for h = 1,....., L–1:

zh � 0 for  h=1,.....,L-2 eZL-1 ��1.

Moreover, by virtue of (5) we have: Z1+ Z2+ ……. ZL-1= 
 
∑

1

1

L

=h
ht +1 which,

given the last relation of (3) is equal to it.

Since it � � – x we have Z1 + Z2+ ……. ZL-1 = it � � – x Q.E.D.
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The coordinates of each point coincide with the components of the
duration vector with the exception of the last component, which differs by
one unit, and so each point is in biunivocal correspondence to the duration
vector. Thus, given their transitive property points � Q are also in biunivocal
correspondence to the feasible trajectories.

In operational terms, association of the trajectory with each point is
possible, identifying first the corresponding duration vector and then, as
explained above, going on to the corresponding feasible trajectory. Or in
reverse, given the generic feasible trajectory it is possible through (2) and
(3) to identify the duration vector in the states and with (5) the corresponding
point �Q.

The set of points P(Z1, Z2,.. Zi… ZL-1) Q thus indicates the range of possible
trajectories. QED

2.5. Probabilities attributed to the feasible trajectories

Once all the possible “life stories” (feasible trajectories) of the insured person
have been defined, it is then necessary to go on to determine the relative
probabilities of occurrence in Markovian hypotheses. To this end, the
matrixes B(i) are defined that indicate for the feasible trajectories the
probabilities of remaining/transition between states – in the ith year –
meaning by probability of transition the probability of the insured person
moving on, at a certain age, from one generic state SK to another, and by
probability of remaining the probability of the person remaining in the same
state Sk.The above-mentioned matrixes (see the table n. 1) indicate, both in
the headings of the columns and in those of the rows, all the possible states
belonging to the set of S states. At the intersection between each row and
each column can be seen the probability of remaining/transition between
the state the insured person took on in the ith year and the state the same
person may take on in the year immediately following.

Table 1
Matrix of probabilities of remaining/transition.

 

S1 S2 … Sh … Sk … SL

S1
1p2,3…L(x+i,x+i+1) 1q2,

3…L(x+i,x+i+1) … … … 1qk
2,3…L(x+i,x+i+1) … 1qL

2,3…L(x+i,x+i+1)

S2 0 2p3…L(x+i,x+i+1) … 2qh
3…L(x+i,x+i+1) … 2qk

3…L(x+i,x+i+1) … 2qL
3…L(x+i,x+i+1)

… 0 0 … … … … … …

Sh 0 0 0
h
ph+1…L(x+i,x+i+1) …

h
qk

h+1…L
(x+i,x+i+1) …

h
qL

h+1…L
(x+i,x+i+1)

Sk 0 0 0 0 0 kpk+1…L(x+i,x+i+1) … kqL
k+1…L(x+i,x+i+1)

… 0 0 0 0 0 0 … …

SL 0 0 0 0 0 0 0 1

state in the year i+1

st
at

e
 in

 t
h

e
 y

e
ar

 i

Indicated in each cell of the matrix are the probabilities of remaining/
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transition between the state taken on in year i (indicated for each row) and
the state taken on in year i+1 (indicated for each column).

These matrixes have the following properties:

– the elements of the matrixes are non negative and less than or equal to 1;
– the sum of elements in each row of the matrixes amounts to 1;
– the matrixes are upper triangular: this is due to the order of rows and

columns determined by the order of states;
– given the initial condition defined by axiom A2, matrix B(0) consists solely

of the first row of generic matrix B(i);
– given the final condition defined by axiom A2 matrix B(�-x-1) shows all

the zero elements except for the elements in the last column (column SL),
which amount to 1;

– given the order of states, the probability of remaining in state SL i = 1,...
(�–x–1) is 1.

The probability of remaining/transition for each feasible trajectory,
represented by the vector of states �(0), �(1),…�(�-x) obtained as function
� (�): M � S which verifies the axiomatic basis of model comes (in
Markovian hypothesis) to:

 ( ) ( ){ }∏
1

0
1

xw

=i
+iΠ,iΠprob

in which the probability of remaining/transition � � � �� �1, ��� iiprob is
defined by matrix B(i).

The sum of the probabilities for all the feasible trajectories relative to

the position of the insured person amounts to 1, i.e. ∑
i

tami
prob = 1

2.6. Transformation of feasible vectors’ trajectories from state vectors to
(contributions/benefits) flow vectors

Transformation of the feasible trajectories from state vectors to
contributions/benefits flow vectors is accomplished taking into account
the regulations (hypothesised in the present paper) applied to insurance
coverage by virtue of which each state can be attributed with the financial
flow. For example, in application of an LTC coverage model, presented in
section 3, in the case of self-sufficiency a premium will be paid by the insured
person to the insurance company, while on the other hand, in the case of
non-self-sufficiency, the insurance company will supply a certain benefit
to the insured person.
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3. THEORETICAL APPLICATIONOF THE NEW VERSION OF
E.I.T.FOR LTC INSURANCE ASSESSMENT

3.1. Description of the typical coverage

The LTC insurance coverage hypothesised for the purposes of the present
paper guarantees three forms of non-self-sufficiency in the performance of
normal everyday activities (such as activities regarding personal hygiene,
nutrition, mobility and household chores) increasing gravity- respectively
“level-1 non-self-sufficiency”, “level-2 non-self-sufficiency” and “level-3 non-self-
sufficiency”. Should the loss of autonomy be ascertained, the insurance
coverage provides for three annuities of increasing proportions in relation
to the degree of non-self-sufficiency (subject to yearly reassessment on the
basis of a predetermined rate). The financing of the insurance coverage
consists of a premium the insured person pays up to a preestablished age.
However, the occurrence of some form of non-self-sufficiency entailing the
right to welfare benefit also brings an end to the obligation to pay the
premium, even if the insured person has not reached the maximum to
qualify according to the policy. No other case apart from the occurrence of
non-self-sufficiency is taken into consideration for interruption of payment
of the premium.

We now come to application of the model presented in section 2 to LTC
insurance coverage.

The range of states is given by the set S = {A, PI°, PII°, PIII°, E} in which S1
= A = “Self-sufficient”; S2=PI°=”Level-I Non-Self-Sufficient” which qualifies
for a “Level-1 LTC benefit”; S3 = PII°= Level-2 Non-Self-Sufficiency which
qualifies for “Level-2 LTC Benefit”, S4 = PIII°= Level-3 Non-Self-Sufficiency
which qualifies for “Level-3 LTC Benefit” and S5=E = Elimination of the insured
person’s position on death.

With the above association the order of (1) corresponds to the following
relation:

A � PI° � PII° � PIII° � E (1)
The order of states given in (1) implies that regression from the state of

non-self-sufficiency is not feasible: thus, once a certain level of gravity of
non-self-sufficiency is reached it is only possible to remain in the same
state of non-self-sufficiency until death or succumb to a more serious degree
of non-self-sufficiency. The hypothesis of recovery is therefore ruled out;
in other words, the probability of recovery, i.e. the possibility that having
once reached a form of non-self-sufficiency – level I, level II or level III –
the insured person may be cured and reacquire autonomy in the



A New Version of the Exact Individual Trajectories Method for the Valuation... 33

performance of normal everyday activities (i.e. the probability of moving
from PI° to A, from PII° to PI° or A and from PIII° to PII°, PI° or A) is zero.This
assumption is dictated by the need to simplify the design of the model –
both from the formal and the operational point of view – but above all by
the lack of statistical evidence to determine such probabilities to a reasonably
reliable degree.

Below we present a scheme of the insured person’s life cycle.

Figure 1: Scheme of the insured person’s life cycle

We state two axioms:

(A1) function � (�) : M � S is not decreasing, i.e. if i, j � M and i � j �
�(i) ���(j);

(A2)  �(0) = A   and   �(�-x) = E.

We now come to the proposition deriving from axiom A1.

If i ��M and �(i) = E ��(j) = E    j: i � j

We now define the sets of indexes Nk, for k = 1,…, 5 associated with
each state taken on in the feasible generic trajectory generated by application
�(�):

N1 = {i � M : �(�) = A}

N2 = {i � M : �(�) = PI°} (2)

N3 = {i � M : �(�) = PII°}

N4 = {i � M : �(�) = PIII°}

N5 = {i � M : �(�) = E}
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We now go on to identify the durations in the states associated with the
trajectory under consideration thus:

t1= 
 

imax
Ni 1�

 t2 = 
 

imax
NNi 21��

 - t1

     t2 =
 

imax
NNi 2∪1∈

 - t1

t3  = 
 

imax
NNNi 321 ���

- t1- t2 (3)

t4 = i5 - t1 - t2 - t3-1

i5 is the index corresponding to the terminal component of the trajectory in
which state E first appears.

We then identify the set  3R�Q consisting of the points P(Z1, Z2, Z3, Z4)  -

with integer coordinates - that verify the following conditions:

 

z)

xωz+z+z+z)

,,=i per  interi z) i

1≥3

-≤2

3210≥1

4

4321 (4)

Let:

Z1 = t1

Z2 = t2 (5)

Z3 = t3

Z4 = t4+ 1

Point P(Z1, Z2, Z3 Z4), whose coordinates are defined by (4), belongs to
set Q which represents the set of points on the plane identifying all the
feasible trajectories.

The figure 2 shows the set of points P(Z1, Z2, Z3) � which identify the
feasible trajectories under the hypothesis that there are only two levels of
non-self-sufficiency rather than three in order to represent them in three-
dimensional space.

The figure shows on axis Z1 the first coordinates of the point
corresponding to the duration in the state of self-sufficiency, on axis Z2 the
second coordinate of the point corresponding to the duration in the state of
level-1 non-self-sufficiency, and on axis Z3 the third coordinate of the point
corresponding to duration in the state of level-2 non-self-sufficiency.
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3.2. Probabilities of feasible trajectories

The table n. 2 represents the matrix of remaining/transition probabilities
of the feasible trajectories B(i) with the same significance as indicated in
table 1 of section 2.5.

Verification that the sum of the probabilities of all the feasible trajectories
amounts to 1 was performed with the program with which simulations of
the model were carried out as illustrated in the section 4.

Table 2
Matrix of the remaining/transition probabilities of the feasible trajectories

B(i) for LTC insurance assessment

Figure 2: the set of points P(Z1, Z2, Z3) Q that identify the feasible trajectories

A PI° PI I ° P I II° E

A
ApI°, II°, II I°,D (x+i,x+i+1)AqI°

II°,I I I°,D(x+i,x+i+1)AqII°
I°,I II°,D(x+i,x+i+1) AqIII°

I°,I I°,D(x+i,x+i+1) AqD
I°,I I°,I II°(x+i,x+i+1)

PI° 0 I°pII °,II I°,D(x+i,x+i+1) I° qI I°
I II°,D(x+i,x+i+1) I°qI II°

I I°,D(x+i,x+i+1) I° qD
II°,II I°(x+i,x+i+1)

PII° 0 0
II°

pII I°,D(x+i,x+i+1)
II°

q II I°
D

(x+i,x+i+1)
I I°

qD
III°

(x+i,x+i+1)

PIII° 0 0 0
II I°pD(x+i,x+i+1) I I I°qD(x+i,x+i+1)

E 0 0 0 0 1

S
TA

TE
IN

TH
E

Y
EA

R
 i

STATE IN THE YEAR  i+1

Detailed description of the elements indicated in the above table is
provided in attachment 1.
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3.3. Transformationof the feasible trajectories from state vectors to
(contributions/benefits) flow vectors

The first point to make here is that self-sufficient persons are under the
obligation to pay the premium until they reach a certain age, which is
predetermined. In the E.I.T. model, as designed for the present purposes,
the condition of self-sufficiency is not distinguished between contributors
and non-contributors who have reached the maximum age for payment of
the premium. Thus age control has been included in the programming, at a
stage of transformation of feasible trajectories from state vectors to
premiums/benefits flow vectors for this purpose. This control entails the
condition that if, in generic year i, the self-sufficient insured person is of an
age of (x+i), above the maximum age predetermined for payment of the
premium (set at 65 years in the case of the simulation) the contribution due
is zero. Including an age limit does not change the outcomes of the
theoretical basis of the model demonstrated in the present paper.

4. ASSESSMENTS

In this section we illustrate application of the E.I.T.model to a hypothetical
case of LTC insurance coverage against the risk of non-self-sufficiency.
Given the paucity of the data that might be utilised for reliable assessment
of the probabilities of becoming non-self-sufficient at level I, level II and
level III, and of the probabilities of transition from one state of non-self-
sufficiency to another, as pointed out below, this simulation has the sole
purpose of providing numerical exemplification of application of the model,
as formalised in the previous chapter.

Also to be borne in mind in evaluating the results is the hypothesis that
the LTC insurance is stipulated in a certain year that coincides with the
starting year of the simulation. Obviously, the simulation extends over a
span of time that covers the entire insurance life cycle.

The aim of the simulation, then, is to determine the contribution
financing the guaranteed insurance coverage, or in other words the
individual equilibrium premium – the sum that, on the basis of the
hypotheses employed, makes the present expected value of the insurance
benefits equal to the present expected value of the premiums received by
the insurance concern guaranteeing the policy.

4.1. Contract conditions

The LTC insurance coverage hypothesised covers three forms of non-self-
sufficiency in the performance of normal everyday activities with increasing
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levels of gravity: “level-1 non-self-sufficiency”, “level-2 non-self-
sufficiency” and “level-3non-self-sufficiency”. Should the loss of autonomy
be recognised, three levels of LTC benefits are attributed in terms of
annuities to be reassessed annually on the basis of inflation.

Payment of the premium is to be made up to a predetermined age.

The LTC benefits (1st, 2nd and 3rd level) are in any case supplied, even if
the event invalidating the insured person occurs before reaching the
maximum age set for payment of the premium. In this case, the occurrence
of (1st, 2nd and 3rd level) non-self-sufficiency puts an end to the obligation to
pay the premium.

Guaranteed benefits

The guaranteed LTC benefits in the first year of simulation (coinciding with
the first year of insurance coverage) amount to the following sums:

• 10,200 Euro per year (corresponding to 850 Euro per month) in the
case of level-1 LTC benefits;

• 16,800 Euro per year (corresponding to 1,400 Euro per month) in
the case of level-2 LTC benefits;

• 18,000 Euro per year (corresponding to 1,500 Euro per month) in
the case of level-3 LTC benefits.

As previously pointed out, the above sums are reassessed annually on
the basis of the rate of inflation hypothesised in the projections.

Contribution

The financing of insurance coverage derives from an annual premium paid
by the insured person (at the beginning of each year), which can be
reassessed annually on the basis of the reassessment rate hypothesised in
the projections, which constitutes, as equilibrium premium, the result of
the simulations described above.

The maximum age at which the insured person has the obligation to
pay the premium stands at 65 years.

4.2. The technical hypotheses applied

a) Rate of reassessment of the premiums and guaranteed benefits: the
rate of reassessment hypothesised stands at 1% per year;

b) demographic hypotheses: Self-Sufficient Survival Table: ISTAT
2014/M;
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c) probabilities of death of level-1 non-self-sufficient: equal to the
probability of death of self-sufficient person increased by 10%;

d) probabilities of death of level-2 non-self-sufficient person: equal to
the probability of death of self-sufficient person increased by 20%;

e) probabilities of death of level-3 non-self-sufficient person: equal to
the probability of death of self-sufficient person increased by 27%;

f) probabilities of self-sufficient becoming level-1 non-self-sufficient:
probabilities set in such a way they are similar to the trend of those
derived from those used by S.Haberman and E.Pitacco for some
numerical exemplifications of a policy of the stand-alone annuity
type, drawn from data of the UK Office of population Censuses
and Surveys (OPCS) (Haberman S. and Pitacco E., 1999);

g) probabilities of the self-sufficient becoming level-2 non-self-
sufficient: probabilities set in such a way they are similar to the
trend of those derived from those used by S.Haberman and
E.Pitacco for some numerical exemplifications of a policy of the
stand-alone annuity type, drawn from data of the UK Office of
population Censuses and Surveys (OPCS)(Haberman S. and Pitacco
E., 1999). There follows graphic representation of the said
probabilities (graph n.1);

h) probabilities of the self-sufficient becoming level-3 non-self-
sufficient: they are equal to the probabilities of the self-sufficient
becoming level-2 non-self-sufficient.

i) probabilities of transition from level-1 state of non-self-sufficiency
to level 2: the equal to the probabilities of a self-sufficient becoming
level-2 non-self-sufficient;

j) probabilities of transition from level-1 state of non-self-sufficiency
to level 3: the equal to the probabilities of a self-sufficient becoming
level-3 non-self-sufficient;

k) probabilities of transition from level-2 state of non-self-sufficiency
to level-3 state of non-self-sufficiency: the equal to the probabilities
of the self-sufficient becoming level-3 non-self-sufficient;

l) technical actualisation rate. In the simulations, to actualise the
financial flows we applied atechnical rate of 2%.

m) Insurance management costs: for the sake of simplicity, no charge
on the premium to cover the insurance management costs is
considered.

For the cases under study here, the probability of recovery (i.e. the
possibility that, having once succumbed to a form of non-self-sufficiency,
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whether level 1 or level 2, 3 the insured person can be cured to the extent of
re-acquiring autonomy in the performance of normal everyday activities)
is set at zero. This assumption, apart from simplifying the design of the
model – from both the formal and operational point of view, through the
creation of the simulation program – is due above all to the lack of an
effective relevant database upon which reliable hypotheses could be
formulated.

Also assumption of the above hypotheses regarding the probabilities
of becoming non-self-sufficient is due mainly to the lack, so far, of reliable
data to measure the risk of losing self-sufficiency.

Graph 1

4.3. Results

Indicated in table 3 is the equilibrium premium for an individual stipulating
LTC insurance at the age of 50 determined on the basis of the technical
hypotheses illustrated above.

It is to be borne in mind that payment of the premium ends if the insured
person becomes non-self-sufficient at level 1, 2 or 3. Ceteris paribus,
obviously, given the distribution of inflows and outflows over time, the
sum of the equilibrium premium is decreasing with respect to the technical
actualisation rate and increasing with respect to the age at stipulation of
the policy and the sum of benefits acquired.
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Table 3
Individual equilibrium premium

Registered Age Limit for Technical Rate Individual
Age  Payment of of Actualisation Premium

Premium

50 Years 65 Years 2% € 5,570

5. CONCLUSIONS

With the E.I.T.actuarial model it is, then, possible to describe, and so consider
for the purposes of economic assessment, all the possible life stories of the
individual, weighted for the relative probabilities of occurrence. Given the
technical hypotheses assumed, the result is not affected by the uncertainty
which, by contrast, characterises processes based on simulation methods.

Moreover, a great deal of detailed data are available; for example, it is
possible to access the cash-flows associated with each trajectory.
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Attachment 1: Elements of the matrix ofremaining/transition
between states probabilities

)+i+x,i+x(p °III,°II,°I,M
A 1  = probability of the insured person remaining self-

sufficient between age (x+i) and (x+i+1);

)+i+x,i+x(p °III,°II,M
°I 1  = probability of level-1 non-self-sufficient

remaining in the same state between age (x+i) and (x+i+1);

)+i+x,i+x(p °III,M
°II 1  = probability of level-2 non-self-sufficient remaining

in the same state between age (x+i) and (x+i+1);

)+i+x,i+x(pM
°III 1  = probability of level-3 non-self-sufficient remaining

in the same state between age (x+i) and (x+i+1);

)+i+x,i+x(q °III°II,M
°I

A 1 = probability of the self-sufficient becoming level-1
non-self-sufficient between age (x+i) and (x+i+1);

)+i+x,i+x(q °III,°I,M
°II

A 1  = probability of self-sufficient becoming level-2 non-
self-sufficient between age (x+i) and (x+i+1);

)+i+x,i+x(q °II,°I,M
°III

A 1  = probability of self-sufficient becoming level-3 non-
self-sufficient between age (x+i) and (x+i+1);

)+i+x,i+x(q °III,°II,°I
M

A 1  = probability of self-sufficient dying between age
(x+i) and (x+i+1);

)+i+x,i+x(q °III,M
°II

°I 1 = probability of level-1 non-self-sufficient becoming
level-2 non-self-sufficient between age (x+i) and (x+i+1);

)+i+x,i+x(qM°III
°II 1 = probability of level-2 non-self-sufficient becoming

level-3 non-self-sufficient between age (x+i) and (x+i+1);

)+i+x,i+x(q °III,°II
M

°I 1 = probability of level-1 non-self-sufficient dying
between age (x+i) and (x+i+1);

)+i+x,i+x(q °III
M

°II 1 = probability of level-2 non-self-sufficient dying
between age (x+i) and (x+i+1)

)+i+x,i+x(qM
°III 1 = probability of level-3 non-self-sufficient dying

between age (x+i) and (x+i+1).




