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Abstract: The aim of this paper is to provide an integrate derivation of the fa-mous model
of Merz and Wiithrich in [Merz and Wiithrich (2008b)]. The formula in classical statistics
framework highlights new connections and in-termediate parameters that we call small
Greeks, these parameters are defined by development year instead of accident year as in
original work in [Merz and Wiithrich(2008b)]. Also step by step numerical investigations
with R code will be presented.
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1. INTRODUCTION

Claims reserving is one of the main concerns for a non life insurance
company. From the granularity that claim handlelrs face to the single item
written in the balance sheet by the accountants, a lot of professionals are
involved in this process (claim handlers, actuaries, internal and external
auditors, risk managers, accountants, IT experts, directors). A good balance
between theoretical assumptions and practical issues may be found in
Claims Reserving in General Insurance data represents a hybrid, since
composed of certain data (payments) and data estimated by the company
(reserves) recorded in the various exercises. The use of incurred data can
cause distortive effects on the estimate of the volatility of future payments,
as the assumptions underlying the estimate of reserves could absorb or
neutralize the increasing or decreasing trends characterizing the historical
series of the payments.

Provided that the mentioned paper includes only the results without
demonstrations as terminal point of the previous papers [Merz and
Wiithrich (2007)] and [Wiithrich et al. (2008)], we present a complete and

* Remark that this article reflects the personal view of the authors and not necessarily that
of their Institutions.
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integrate derivation of the model in a classical statistical way (different from
the bayesian approach. highlighting new connections with specific analysis
of the formulas, we call small Greeks to differentiate them from Capital Greeks
introduced in [Merz and Wiithrich (2008b)]. In [Biihlmann et al. (2009)] the
model was analyzed and derived in a bayesian context, with a priori
distribution hypothesis, through a recursive algorithm, highlighting how
the model derived from the chain ladder, positions itself at a lower level in
terms of results (due to linear approximation). This approach was applied to
obtain successively other results [Merz and Wiithrich(2014), Merz and
Wiithrich(2015)]. These small Greeks are dependent on development year
and they are useful to evaluate the prediction error on size beyond the triangle,
in case tail provision is still significant, through the extrapolation. Moreover
we provide interpretation and graphical analysis.

We try to highlight the main contribution of this paper: we refer to
several papers behind M&W model even if in these articles the theoretical
framework was very fragmentary with different notations and with some
error subsequently corrected. We therefore are showing also a very
structured and model’s derivation for students, researchers and
practitioners. In the text the demonstrations, the results and the R-code are
declined in a compound way in order to achieve a better theoretical
understanding following the conceptual map in figure 1.

We see hence that thousands of people use M&W formula but few of
them know its demonstration and still less may have studied the
derivations. We want to overcome this situation.

The first stochastic chain ladder model namely the distribution free Mack
model (in the time series version introducing conditional re-sampling
technique as in [Merz and Wiithrich(2008a)] ) was necessary as starting point.

The MW model has the objective to quantify the next year claims
development result’s volatility. At time [ we evaluate the ultimate cost with
the available information; at time I + 1 with more information this prediction
will change. The difference between these predictions represents the claim
development result (CDR) for the balance year (I, I + 1]. This value has a
direct impact on profit and loss (P&L) and on solvency position of an
insurance company.

Operationally in the model we analyze the prediction of CDR and the
fluctuations (in terms of uncertainty) around that to answer to the following
practical questions:

¢ in general we predict that CDR in the balance (I, I + 1] in the budget
plan written in I is 0 and we analyze uncertainty related to this
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prediction. So we define a prospective view about the potential
deviations of the CDR from 0 in a specific volatility;

e In the P&L statement in I + 1 we observe the real CDR; we ask
ourselves if this observation stays in a reasonable range around 0 or
is an outlier. So we define a retrospective view and the volatility is
decomposed in two components: process error and parameter error.

In claims reserving literature the run off uncertainty until the final
extinction of the accident years has been of great interest. For the chain
ladder method the theory below was formulated by [Mack(1993)]; this is
the long term view that is important to investigate on financial strength.
Indeed all the stochastic models for claims reserving proposed until now
reflect this concern.

Nevertheless recently some works are concentrated on short term view
as the one year Solvency II prospective because:

* the insolvency arrives before the claims closure;

* theshort term view is relevant for management decisions taken on
annual basis for the main balance sheet items;

¢ through the balance sheets the short term performance of
the company is monitored by insurance supervisors, clients,
investors, rating agencies, stock markets. This results impact on
financial stability and reputation of the company in the insurance
market.

In Section 2 we give a Chain Ladder’s overview through the data
organization, claims development results, basic concepts, times series
approach and Merz, Wiithrich and Lysenko Lemma. In Section 3 we give a
derivation of model [Mack(1993)]. In Section 4 we show the one-year view
by means of [Merz and Wiithrich(2008b)] model. In Section 5 we provide
the calculation of MSEP of CDR and ultimate view using the small greeks.
In Section 6 the conclusion is given.

Table 1
Run-off triangle of cumulative payment
i/j 0 1 e ]
Yoo Yll S Ylj S Y]]
1 ‘Y.l[] Yll
i Y,
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2. SECTION

2.1 Data Organization

Given Y, as the paid sum, with j as the delay in payment for accidents
happened in the i-th year, usually called incremental payment.
These payments are usually represented in the so-called run-off triangle
(see Table 1).

j
Given instead Cij = 2 Yy as the cumulative payment, i.e., the sum paid-
k=0
off for the i generation within the first ] development years, the recursive
relation C, =C, | + Y, withj> Oiseffective. Theratio F, , =C, /Ci,j—l’ named
link ratio, is the factor connecting the cumulative payment between two
close development years—the j — 1 and the jfor the same i generation.
Assuming that the payment process of each generation will be surely over

]
within | years, the overall cost of the i generation will be: Ci= EYz‘k
k=0

writing again the overall cost in the sum of the two addends will make
things clearer:

t=i ]
t
Cz(]) = Zsz + Z Yy,
k=0 k=t—i+1 (1)

deterministic stochastic
since in the ¢ balance-sheet year the first addend is known for sure, while
the second is subjected to randomness. For our purpose the balance-sheet

year is t = I, so in the next we refer to I for meaning the time of evaluation.
Therefore, the claims reserve estimate for the i generation for the ¢ balance-

sheet year, concerns the random component of C\, that is to say, we have:

J
RV=% Y, =C", -C

b= Tt
k=t-i+1

]
o R® = Y . .
We will instead name & = ik the claims reserve estimate, made
k=t-i+1

atthe t time, and R") = 2 lA/Z-]- the overall claims reserve for all generations.
i+j>t

In the following passages, we will use t to make reference to the current

date of estimate.
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2.2 The Claims Development Result

The CDR is the technical result of the evolution of the claim settlement
process. In other words, it calculates if the claims reserve Rf -set aside in
the I balancesheet year, for the i generation—is enough to pay the claims
X

it—i+17

between t and t + 1 and to set aside the new claims reserve R'*'in I
+ 1 formally:

CDR, |, =R/ —(X; i, +R™)=C/,-C[¥!, i=1,.,1I (2)

is arandom variable if the observation momentis I, while it is a deterministic
value if the observation moment is I + 1. In the risk estimate and solvency
capital calculation framework, we are interested in I observation random
variable, while, aspect observed in I + 1. Particularly, we have a loss if
CDR,,,, <0, while we have a gain with a positive result.

CHATH LADDER
Factor estmates
ultimate cost estimates
ML properties

MACK MERZ WUTHRICH
RUN OFF VIEW ONE YEAR VIEW
" 1_prediction error 8_prediction erfor
1_ prediction error o i iR
2_process arror 4_parameter arror 2 var@ance term 4_errar term
accident year|22S0TEEe 5_parsmeter error average |3_estimate (thets, ni) 5_ermor term average |9_true CDR variance
6_estimate 6_estimate (gta, nl) |10 _estimate (theta)

7_prediction error
7,D!ed|§t|o;\ error from true CDR 11FDretE‘|ctn€n ertmr
estimate prhilas rom 0 estimate

12_prediction error
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Figure 1: A map to drive in MSEP evaluation.

Provided that theoretical background of the model is complex enough
we refer here to a conceptual map for orienting the reader along this pattern.

2.3.Chain Ladder Method: Basic Concept

The idea underlying the chain ladder method is that there is a proportion
between the cumulative payments of two close development years, except
for an erratic component with a null mean:
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Cii=Cif;+&, i=01,..,1-j-1, (3)

looking at Equation (3), we conclude that, in the chain ladder model, the
cumulative payments are showed by a line through the origin for each j
development year. If we assume the residuals variance is Var(§,) = GZC,,J,,
the least square solution for the f, estimate is:

I-j-1 I-j-1

A Cojr D, Cujbi

fl=2= = kjf’]._l , j=01,.,]-1,
C, G, ;

/] /]
=0 k=

fe=}

—

(4)

=
fe=}

which is the weighted average of all link ratios observed. This approach
implies that the cumulative payments C, . and C, for i, # i, are
independent; each ratio j, beyond being independent from the i generation,
must also have equal first two moments with a fixed j, thus the process of

claim settlement must not have undergone structural changes in time.

The ultimate cost éf ; estimate is calculated through the use of the factors

A~

/i

J-1
A1 I .
Cz’,] =Cz’,I—z’ Hf], 121,...,1, (5)
j=I-i
thus the claims reserve estimate is:
RI=Cl,~Cipyy i=1,m 1. (6)

2.4.Chain Ladder Method: time series approach

For each accident year, the chain ladder model can be viewed as an
autoregressive model where the innovations are not white noise but they
are heteroskedastic and dependent on the square-root of the previous
observation. In [Merz and Wiithrich(2008b)] the time series hypothesis has
changed by three assumptions: mean, variance and Markov process.
Nevertheless all the results have based on times series approach. We assume
that exist costants f, and o, such that:

Ci;j=fiuCij1+0,4 ,Ci,j—l g i=1.,1 j=1..]-1 (7)
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where C, (>0, E [‘c'i,j] I=0and E[ei ;1=1, therefore the mean and Variance of
cumulative payments are E[C;;IC,  ,]=f,,C;;; and Var [C,; | Cal=
Gf_l C; ;.1 respectively.

These assumptions have to be verified for data fit with graphical
analyses to highlight the accident years independence and the residuals
distribution and with a regression analysis to evaluate the materiality
of development factors. The same assumptions, using the tower property
of conditional expectations, allow to define the expected ultimate cost
as:

J-1
E[C,,ID1=C,, . []f, i=L-I (8)
j=I-i

where D1={Cw,;i+ j<I i<I}denote the claims data available at time f = I.
In the same way at time t = I + 1 the expected vale is

EIC, ;1D 1]1=C; i HE_M f;- Wherever the development factors are

known, we are able to calculate the unconditional expected ultimate costs
provided the available information. However these factors are unknown
and have to be estimated as ratio between sums of cumulative payments at
different development moments through (4) that we rewrite in the
convenient form:

R 2{_]'_1'(:. . j
1 Zi=0 i I _ yl-j-1
fl= ( with S; =%, C;
]
.z, : ©)
fj1+1 — % ZUlth S]I."'l = Ef;écz,]
j

Estimates quantified in the next year are enhanced by incremental
information on claims development result, within the two instants.
[Mack(1993)] demonstrated that estimators are unbiased and uncorrelated,
for development year, thus the estimators for the expected ultimate cost are:

ElCz’,] |D1] = CiI,] = Cz’,I—ifII—z' fII—z'+1 "'f]I—zf]I—1
Al
CI,I—H»I (10)

_ A+ _ T4l FI41 Pl
ElculDHJ —Cu '—Cuqﬂ an'”ﬂa J-1-
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2.5.Merz,Wiitrich and Lysenko’s Lemma

As introduced in [Wiithrich et al.(2008)] and under the model assumptions
2.4, we have the following the Merz,Wiitrich and Lysenko’s Lemma that it
will be useful for further elaboration:

a)

b)

)

Ciivnns Sk, f ! are independent conditionally to D
Develompment factor’s expectation:

E A1+1|D _qI S]I' + CI—J'-J'
fj 1 —fj RE f] S I
j

j
Conditional mean at time I of the estimate ultimate cost at time
I+1E|:CI+1|D:| CzszIzH]Iz+1 |:fj1+1|DI:|;

Conditional squared mean at time I of the cumulative payment at
timel+1

[CzI 1+1:| friClii+01Ciris

Conditional squared mean at time I of the development factor at
timel+1

s-ic, 2 o2C, ..
z 0™~i,j+1 1 I-i,i
E|:(f1+1) ID :| [ ]H1 SI+1]+ f] SH{l]] ! ’

j

Conditional product mean at time I of the development factor at
timel+1

E[ zIz+1fI+1|D:| SI+1(fI 1C121+GI 1C11+5}+11f11 Iz)
I-i

Proof of the Lemma:

a)

Cirin = fiiCiri+or i JCiri€irin &rin

sl I-j1 i
141 ZioGi Ll Zio G Crjjn 2 5 f] 1Lij1 105 \/
fj I+1 - I+1 + I+1 = f] I+1 I+1

Sj 5j 5 Sj Sj

is function of the r.v. € thatitisin therange (e, , _HJ). Since for
the model assumptions the residuals are independent the a) is proved;
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)

I+1
S1-i

I-i

E[Ciz,l—i+1

1D, ]

J’_

1

I+1

I-i

i
k=

0

1
T;(flz—iclz—i +07-Cri + S5 fiuiCri )

Ck,I—i+1E[Cz',I—i+1 | DI] =

I-j-1 I-j—i
E ~1el D= 2o Ci,j+1 E[Cl—j,j+1 I D] _ 20 Ci,j+1 CI—j,j _
fj I\ I+1 I+1 I+1 +f]' I+1 —
S S S; S
j j j j
I
4 f Cry
SI+1 j SI+1 4
j J
~ 2
I+1 _
Eﬂﬁ )|DJ_
) 2
I-j-1
2o Ci,j+1 CI—j,j+1 D |-
= SI+1 SI+1 I
j i
I-j-1 2 I-j-1
i Cz’,j+1 E[Cl—j,j+1 | D] 2o i,j+1
- +2 E[C,_....ID,]=
= I+1 2 2 I-j,j+1 I
s- (S{+1) SI-+1)
I i i
yi-j-1c 2 22 20 sl=i-1c
i=0 i+l f] I-j,j +Gj I-j,j =0 i, j+1
= I+1 + 2 +2 2 fJ'CI—J'J' =
= S I+1 I+1 §
j (5) (57)
j j
sFe c...Y o2
i=0 i, j+l +f I-j,j + j&~I-j
= I+1 j LI+l 2 7
S S I+1
] ] (S]- )

1

j
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In several steps we will use the following approximation:

] ]
H(1+aj) ~ Ea]- with — a;>>1 (1)
j= j=1

3. MACK MODEL REVISED

In this section it is revised the model proposed in [Mack(1993)], which it is
widely used to estimate the mean square error of prediction(MSEP) of the
ultimate cost in the chain ladder framework:

A~ 2 N 2
MSER,, ,, = E[(C” —CZ.J) | D,] —Var(C,, 1 D,)+ (E[C” ID,] —c”)

process

(12)

parameter

the MSEP can be divided into process and parameter error, the first one is
related to variance of r.v. C;; while the second is linked to the bias of the

estimator C, ;.

3.1. Estimation of process error for a single accident year

The variance of process error can be write through the law of total
variance:

Var [sz |D,]= Var[C,I |C

| i,l-i

G?—l E[C,;, IC]1+ f]z—l Var[C, ;1 1C; ]

g =E[Var[C, |C 1[C 1+ Var[E[C, |C ]

= G] 1Cirs 1H1 i ft f]2_1 Var[C; ;4 1C; ] (13)

by means of (13) a recursion procedure can be start and process variance
becomes:

J-1 B2
2 .
Var[cz] |CzI 1]_E[C1 ] |C11 z] 2 W i=1..,1, (14)
] —i ] 1 1

where B, = 6,/ is a coefficient of variation.

Using is the Mack’s estimator for o; :
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2
R 1 C.ivy =
2 I-j-1 L,j+ .
(oF —>X C - f; =0,..]-2
j I ] 1 i=0 Z](CZ’,]’ f]] ] ]
(15)
67, =min (6}1_2/612_3,(5? 3,67 2) j=]-1
the estimate of process error is:
A 20 = BA .
Var[CiJ | DI]Z Ci] é = ...,I. (16)
j=1-i

3.2.Estimation of parameter error for a single accident year

In order to calculate the parameter error for a specific accident year, it is
necessary to determine the fluctuation of the square estimators of

development factors f;,.., fj; around the true values fi ... f/;.To

realize this the estimators volatility has to be specified through conditional
re-sampling technique: provided information in I we generate new
observations:

Z;;=fi1Cija+0;4,Ci 18 (17)

that lead to new realizations for the expected estimated development
factors

' j
i i,j+1 j .
= ; =fj+_12 Ci,jgi,j+1 0<j<]-1, (18)
i
differently from the observed cumulative payments, the new observations
of development factors j}jI are random variables; moreover the initial

observations are unconditionally independent from ¢, and fy,..., fj_, are

conditionally independent on D,, so the expected value and variance are:

E[J}jl_llDI:I fis1 and Var[f] 1|D] :]; (19)

Now using the results above we are able to obtain the expected value
of parameter error in 12:
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E[(EIC,; 1D,]-C, )’ 1D, =

2 A
(7Y 1 2 -2ml 7 ]’;%ff)'DI]=

(e}
2 J-1 J-1
= G| o 5 +f; | -2 zf] }
j

2 2
o:/f;
szl ZH; } zf] [Hz—z[ : If] +1]_1}
S.
]

2 2
(y/f
zIzH}}zf] ZT]

2 1 1 2
- CzI zH{ If z";:I—i 77]/
2 2
2_9j / f] ) . .
where 7j = sl Is the coefficient of variation normalized to the square
j

root basis for calculation of the factors at time I.

Substituting with the estimators we get the estimate of parameter error
for a single accident year:

E[(EIC;;1D11-C;) 1D |~ €2y (21)

3.3.Estimation of Mean Square Error of Prediction

The mean square error of prediction for a single accident year in (12) can
be estimated substituting the estimator in (16) and (21), so we get the
following estimate:
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. . L (B
2 ] -
MSEP, (C;))=Cl Y | =+7; | (22)
o j=I-i Ci,j
Table 2

Cumulative payment used in the empirical application (,000)

i/ 0 1 2 3 4 5 6 7 8 9 10 11 12
0 22,603 62,541 97,614 123,163 143,194 160,787 175,717 190,721 201,040 209,280 217,384 223,404 242,549
1 22,382 63,884 90,392 110,126 128,841 142,824 155,709 172,080 180,001 187,205 191,633 204,530

2 25,355 71,062 104,124 128,356 145,121 158,301 169,940 178,804 188,798 194,842 198,796

3 26,830 79,177 116,501 140,091 158,339 172,234 185,376 196,495 205,924 210,981

4 26,868 89,181 122,953 145,878 162,219 174,638 187,284 196,743 203,401

5 28,470 84,567 126,239 151,082 173,900 192,687 209,634 224,576

6 26,170 81,532 120,558 147,375 170,256 189,919 209,314

7 24,101 82,621 121,370 143,819 159,827 172,333

8 22,714 71,421 100,391 119,189 132,558

9 19,973 58,235 81,533 96,352

10 17,252 54,246 78,607
11 17,591 47,665
12 16,907

In order to illustrate the numerical computation we use the cumulative
payment C, in Table 2 that it is obtained by the triangle of incremental
payments used in [Cavastracci and Tripodi(2018)]

Listing 1: Code for Table 3: Estimation f, o, S, 7.

## Cunul ative.Paid is the run-off triangle in Table 2.
## It nmust be as.matrix and future value are indicated as NA

n.origin <- nrow( Cumul ati ve. Pai d)

n. dev <- ncol (Curul ati ve. Pai d)

origin <- 0:(n.origin-1)

dev <- 0:(n.dev-1)

devil <- 0:(n.dev-2)

| ast. di ag. i ndex <- n.origin+(n.origin-1)*(0:(n.origin-1))

Last. Di ag <- cbind(0: (n.dev-1),(n.origin-1):0, Cunul ati ve.
Pai d[ | ast . di ag. i ndex])

col nanmes(Last. D ag) <- c(‘'Dev’, ‘Oigin, ‘dj")

## equation (9), estimates f_{j}~{I}
S 11 <- apply(CQunul ati ve. Pai d, 2, sum na. r n=T)
S | <- S 11 - Last.Diag[,’Cj"]
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names(S_I1) <- names(S_I1) <- dev
f <- S I1[-1]/S_I[-n.origin]
nanmes(f) <- devl

## equation (10), estinmates C_{ij}~{I}
hat _Cij <-matrix(,n.origin,n.dev)
hat _Cij[last.diag.index] <-Last.Diag[, Cj’]

for(i in 2:n.origin){
hat_Gj[i,(n.origin-i+2):n.dev] <-
Last.Diag[n.origin-i+1, Cij’ ]*cumprod(f[(n.origin-i+1):
(n.origin-1)1)
}
hat_GJ <- hat_Gj[,n.dev]
nanes(hat _CJ) <- dev
## individual link ratio
Fij <- Curmulative.Paid[-n.origin,2:(n.origin-1)]/
Cumul ative. Paid[-n.origin,1:(n.origin-2)]
## internediate calcul ation
Fij_sum <- apply(Cunul ative.Paid[-n.origin,1:(n.origin-2)]*(Fij"2),
2, sum na. rmeT)
## equation (14)
sigma_temp <-
sqrt( (Fij_sum -
(f[-(n.origin-1)]72)*S_I[-c(n.origin-1,n.origin)]) /
((n.origin-2):1))

sigma <-c(signma_tenp,

sqrt(mn(tail (sigma_tenp,1)*4/tail (sigma_tenp, 2)"2,
tail (sigma_tenp,2)72,tail(sigma_tenmp, 1)72)))

##

nanes(sigm) <-devl

beta <- signa/f

beta2 <- beta”2

eta2 <-(betan2)/S I[devl+1]

eta <-sgrt(eta2)

Table 3 <- cbind(f, sigm, beta, eta)
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Table 3

Estimation of Mack’s parameters using the run-off data in Table 2. The
results obtain running the code 1

G

N

N

j ij j B; nj

0 3.0186 33.9052 11.2322 0.0212
1 1.4531 13.7190 9.4409 0.0106
2 1.2069 8.2941 6.8725 0.0066
3 1.1366 8.2933 7.2965 0.0066
4 1.0983 6.9007 6.2832 0.0056
5 1.0853 4.7015 4.3321 0.004
6 1.0699 8.6955 8.1273 0.0078
7 1.0474 3.809 3.6366 0.0038
8 1.0342 3.4356 3.3219 0.0038
9 1.0279 4.4252 4.3052 0.0056
10 1.0462 12.6403 12.0815 0.0189
11 1.0857 4.4252 4.0759 0.0086

In order to obtain the estimate of mean square error of prediction for all
accident years, we consider at first the estimation for two accident years k

and i (with k > i):

AL, A AL AL 2
MSEP. ¢, (Cj+Ci )= E[(CU +Cly=(Cy+Cy)) | D,] =

_ Var(Cy +Cy | D,)+(éf] +Cl —E[C, +C,, |D,])

2

process

Var(C,; | Dy)+ Var(Cy 1 D;) +

process

parameter

. (G - EICy ! Dl])2 +(Cly - EIC, | Dl])2 +2(C}— EIC, 1D,1)(Cly — EIC, 1Dy )=

= MSER 1, (C} )+ MSEP,, 1, (Cly)+2(C} — EIC, 1 D,1)(C), — EIC,, 1D,1),
(23)

parameter

E[((A?i, -C, )2 | DI]+ E[(ék, - ck,)2 ID, ] +2(Cj— EIC, 1D,1)(C, — EIC, 1 D)
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from (23) it results that the MSEP for two accident year is equal to the sum
of MSEPs plus the blue formula that it derives from the correlation between

the estimators C ; and C ;- it is the parameter error between two accident

years. The last one can be estimated using the results of conditional re-
sampling technique:

E[(ézI] - E[Cz’] ID,]) (élij - E[Ck] ID,)ID,]=

= G Co [ 1 DI](HHIE[( 7)o, ] s E[ D,D _

A 72
= CzI i~k,I- knj ; %{f](n 1E|:( ]I) |DI:|_H§;}_Z' f2):
2
_Cipi klkﬂﬁéiﬂ[ﬂf}z(ﬁ {] {8 o f}=
J’

2 g2
i G/f
= GG knjlkfjng}zf] [H:_Z[ + ]1 ! ]—1}z

2 2
(y/f
I-i-1 J-1 -1 2ilJi
~ Ci G 38 P kf]H] - zf] 2l g
j

= CiChik fékfnjlzijlzrl]/ (24)
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substituting the unknown f, and n, with them estimators j}] and ﬁ]- then we
get the corresponding estimate:

A A A A A ]_1 A
E[(¢) - Eic, 1) (€} - EiC,, 1D1)|= €1 € j;_in]?. 25)

Finally the estimate of the overall mean square error of prediction that
it is the Mack’s formula in [Mack(1993)]:

] ]
MSEP, _ (2 é{,] =Y MSEP. , (C})+2Y C)C
i=1

i=1 k>i

Listing 2: Code for Table 4: Estimation MSEP for ultimate cost.

#The Code 1 nust be runned before this.

## equation(6) clainms reserve estimate

hat _R_i <- hat_CJ - Last.Diag[n.origin:1, ‘G j’]
##

hat _Cij_rec <- 1/hat_Gij

hat _G j_rec[which(is.na(hat_Gj_rec))] < O

## equation (15), estination of process error for ultimate cost.
hat _Process.Error_CiJ <- (hat_C Jr2)*
(hat _Cij_rec[1l:n.origin, devl+l] % % beta2)

## equation (20), estinmation of process error for ultimte cost.
hat _Estimation.Error_CiJ <-(hat_Ci J"2)*c(0, cunsun(eta2[(n.origin-
1):1]))

## equation (21) = equation (15) + equation (20), estimation of MSEP
for ultimte cost

MSEP_hatCiJ <- hat_Process. Error_CiJ+hat _Estimation.Error_C J
nanmes(MSEP_hat G J) <- origin

## equation (25), estimation MSEP for overall generation
covariance <- 2*sum(hat_CiJ[2:n.origin]*

c(cumsun{hat _CiJ[n.origin:3])[(n.origin-2):1],0)*
cunmsunm(eta2[(n.origin-1):1]))

MBEP_MACK tot <- sum(MSEP_hat G J) +covari ance
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Tabl e. 4 <- rbind(cbind(hat _R_i,hat_CiJ, sqrt(hat_Process.Error_G J),
sqrt(hat _Estimation. Error_GJ), sqrt(MSEP_hatCilJ)),

c(sumhat _R i), sunm(hat _Ci J), NA, NA sqrt ( MSEP_MACK tot)))

col names(Table.4) <- c¢(‘hat.Ri ‘, ‘hat.GJ ', ‘r.Process.Error’,
‘r.Estimation.Error ‘, ‘rMSEP ')

Table4
Estimation of rMSEP with the Mack model. The output is made by the code 2

i R ¢, |VARIC;, D, \/ﬁ[(E[Ci,IIDI]—éi,])ZIDI] \/MSEP(EH(CAZ-J)

0 0 242,549 0 0 0

1 17,528 222,058 2,001 1,915 2,770
2 27,018 225,814 6,443 4,689 7,969
3 35,356 246,337 7,115 5,298 8,871
4 42,212 245,613 7,331 5,363 9,083
5 59,463 284,039 8,179 6,294 10,320
6 73,930 283,244 9,593 6,654 11,675
7 80,752 253,085 9,445 6,030 11,206
8 81,245 213,803 9,433 5,235 10,788
9 80,285 176,637 9,526 4,481 10,527
10 95309 173916 10,369 4,559 11,327
11 105,579 153,244 11,775 4,331 12,547
12 147,172 164,079 18,691 5,798 19,570
Tot. 845,851 2,884,420 - - 65,183

“hat.Cid”,’r.Process.Error”,’r.Estimation. Error”,”rMSEP”)

4. THE ONE-YEAR VOLATILITY

The one-year volatility is estimated by means of the CDR’s definition like
in section 2.2. In this section we define the CDR as the difference of
conditional expectation between two consecutive balance years:

CDR;(I+1)  =E[R}ID;]=(X;;_p, + E[R I Dy ]) =

—E[C,,1D,1-E[C;,IDyy], i=1,..,1 (27)

the stochastic process CDR (I + 1) is a martingala thus E [CDRi(I + 1) | DI | =
0, namely the expected run off is zero at time I.
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The variance of CDR for a single accident year can be calculated as:
Var [CDR;(I+1) [D]= Var [E[C, [D]-EIC, |D,ll=
Var [E [C” |D,,11=

Var [Ci,l—i+1 | D]] Hﬂ;}—z}l,sz = (28)

2 J-1 2 _
0 ColiZ i fi =

2 2
iC, 1D, I S

i,I-i

E[Ci] |D1]2 912_,-/ i=1,..,1,

2 2
0> =il fi . . .
where Yi-i =7~ is the coefficient of variation normalized to the square
i,l-i

root basis for calculation of the individual factor.

Since the payments among accident years are independent, then the
variance for overall accident years is calculated as the sum of variance of
single years:

1 1
Var[ZCDRi(I +1)l DI]= ) EIC,ID,T 6. (29)

i=1 i=1

The estimator for CDR is:

CDR,(I+1)= Rl =(X, s - RI")=C} - CJ! (30)

the estimator for overall CDR is computed as the sum of the single
estimators.

In a retrospective view we have the mean square error of prediction of
the observed CDR that it measures the quality of approximation:

MSEP,

CDR, (I+1)ID,

(CDR(1+1))= E[(CDRZ-(I +1)-CDR(I + 1))2 | Dl]r (31)

while in a prospective view (as required in Solvency II) the mean square
error of prediction of the CDR is computed from zero, it measures the quality
of prediction:
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MSEP,

CDR;(I+1)D;

(0)=E[(CDR,(T+1)-0)*ID; . (32)

4.1.Mean square error of prediction for a single accident year

In order to estimate the CDR in a retrospective view, the (31) can be written
as:

MSEP,

CDR;(I+1)D,

(CDR;(I +1))=

= Var [(CDRi(I +1)~CDR(I +1))! DI] + E[(CDRZ.(I +1)~CDR(I +1))! DI]2

process parameter
e —— 2
I
= ¢ +E[CDR(I+1)]
- | S S ———
process parameter

The process error (pz-I] for the first accident year (i = 1) is null, this result is
natural since we consider that all claims has been paid in | years, thus

(pf] =0. Fori > 1 the process error can be decomposed using the properties a)
e d) of the Lemma 2.5:

@j = Var[CDR,(I+1)I D, ]+ Var[ CDR,(I +1)I D, |- 2Cov[ CDR(I +1),CDR(I +1)]=
= E[C, ID, 62, + Var(é{,“ ) - ZCOU[E[CU D, ],é},“] -

= E[C, D, 67, +
A N2 5
N E[(Ci]) IDI]—E[CUIDI] +

- 2Ci,1_i+1 COU(H]-_l f].,H],—l TI+1 ) _

j=I-i j=1-i+1Jj

= E[C, D, 67 +
A 2 A 2
+ E[Cipm lDI]H]]';IlfiH EI:(ijH) |D1]_ E[Ci,lfm | Dl ]2 H};}finE[fjHl |D1] +

- 2Var[C; iy | DI]H]]';}—Hl E _fjHl | DI:Ifj =

= E[C, D, 67, +

inE (J}]‘I+1 )2 | DI:|_ flz—iciz,lfi Hjtzlfm E[J}jul I D, :|2 +

+ (f]zficiz,lfi + Glzfici,lfi)né;}f
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2612—1' Ci =i H; } it1 I:]chhl | DI:Ifj =

E[C, DT 6} +

fiCh Var[]}j”l I DI:I+
A 2
GIZ—i Cz (H} } 1+1E|:(f1+1) ID :| ] } i+1 |:fjl+1 |DI] )
(34)

At this stage using the properties b) and e) of the Lemma 2.5 we can
obtain the estimates of the conditional moments:

+

+

é[j}jnl |D1] _ Aj]
flirfin] ATy
I+1 6202 | (35)
Var[f+ID] :C] !
I=j.j

C,_;;/S;*™" is the credibility coefficient as proposed in [Merz and
Wiithrich (2015)]. Replace the equations (35) into (34) we can derive an

where v ;=

approximation of the process error (pf] :

~2 2

JURV-IR 620

~ I 2 ]—1 ]
(sz] = (Ci]) eI —i (f] z) il-i j=I—i CI_]-,]. +

~2 2
17

+ éf—icz’,l—z’ (H]]';}—Hl)[(}-j] )2 + EIU} (H} I z+1(f] ) )
~i,j

T ezt {7t et -

~2 2
]'0]

_ (éZI] )2 é?_z- +((,}}I—i)2 Cz-z,j—i +6?_1C1-,1_,)H5 } i+1 [(f] )2 gl ]-]J+
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H]]-;}—m (1 + é?—z’vf’ ) - 1) =

Pe—aily

(36)

where ®, =3/ ., 6707

Then we calculate the parameter error of (33) using the conditional
resamplig technique. By properties b) and c) of the Lemma 2.5 results:

E[CDR(1+1)ID, ] = E[C-C)"™ |=

(37)

Let be o; = S]I- / S]I-Jr1 and therefore 1-a; = C

can be

/S;*! the equation (37)

I-j.j

o J-1 J-1 R
E[CDR(I+ 1D, ]=C,y- [Hf ~ i I (o + 50 ow)]- 68)

j=I-i+1

Now we can derive the parameter error of CDR:
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EI:E[C/ﬁQi(IJrl)]zIDI:I:
e 1E[(H S U (o £ o)) IDI:|:
= Cff_i(Hﬁ;}_iE[(ﬁ) ]+f, o, [(ocj}; +fj(1—ocj))2 |D,]+

= 2E| FLf U (o )+ £ =)D f]) -

= C/L Z(H (Var[f D ]+f] )+f1 Byl [(“j(J}jI—fj)+fj)2]+

_ 2E[J}II_,- fiemUdn B (o (7= £ )+ £ 1D ’D -

Caoi (Nt (Vi 1, |4+ 72 ot o2V 1D, ]+ 72+

- 2fh Z(ocVar[j}].IID,]+f].2)):
2 o2
Ciz,I—i[Hg;}—z (_1]"‘]3 ]+f1 AT z+1[0C _1]+fj2]+
S 5j
o>
_Zfl —i I 1+1(O(‘ _I]+f]'2]}:
5

2 2 2
2 f7 } c;/ f;
= CzI Z[H; } Zf] ( [ : +1 +f12—iH§=}—i+1fj2 O(‘]z' ]SI~ . +11]+

] ]

2 2
_ i/ fi
2 f i f} [O‘i ]51 —+ 1]} =
j

= 111]‘[]1 f](H_ Z( +1)+H{}1+1(o¢]2.n]2,+1)+

j=1-i =

=201/} (oc]-njz- +1)):
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J-1
= zIzH]Iz

£ 2+ 1 T (0 1)+ T (o] +1) +
j=I-i+1

211} (ocjanrl)z

~ C121 IH'{ } zfz(n +1+E] =I- 1+1n] +1+E] =I- z+10L n] +1+

—2(2’ 1O +1)):
= O (ne+El 0 —oc].)Zn]?)z

A

= Cf,](n +E a0 n])

2 2
2 G]'/fj

where T =

1
5j

Finally we can get the estimate the parameter error as:
A o — ~ ]_1
E[CDR(1+1)ID, |=C} | i+ Y, o7 [=CPjA),
j=l=i+l

now keep in mind the (36) we can get estimation of mean square error
prediction for CDR (retrospective view) in (33) that it is:

Mﬁ’cﬁél(nl)m, (C/D\Ri(l + 1)) = (éf] )2 (Ci)f] + AZI] ) 41)

The previous result will be used in order to estimate the mean square error
of prediction of CDR in a prospective view through the following decomposition:

MSEP

CDR;(I+1)ID, 0)=

E[(C/ﬁzi ~of IDI]:

E[(C/ﬁzi +CDR,(I+1) - CDR,(I +1)) | D,]:

2
= MSEP 1,10, (CDRi(I+1))+ E[CDR (I +1)" | =
_ MSEP, . (CDRy(I+1))+ Var[CDR,(I +1)1 D;]+ E[CDR,(I +1) | D, F,

=0

(42)
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considering that the estimation of the true CDR is:

Var[CDR,(I+1)I D,]=C26% Z-_CZ]‘PI (43)

So the estimate of the mean square error of prediction for observed
CDR from zero is:

MSEPcow s, (0)=(C) ) (A + @) +#)=(C) ) (&) + 1)) (a9)

4.2.Mean square error of prediction for overall accidents year

The aim of this sub-section is to derive the one year MSEP for overall
generation. As for a single accident year we have the retrospective view
(the deviation from true CDR):

i=1

2
MSEP, e vin, [ECDR (1+1] [[ECDR (I+1)— ECDR (1+1)] |D,]

(45)
and the prospective view (the deviation from zero as required in Solvency 2)

I 2
MSEP,, 5z iy, O ):E[(ZCDRZ-(I+1)—O] |D,]. (46)

i=1

Starting we have to evaluate the correlation among the accident years’
estimates provided that the estimators of development factors are used for
overall generations in the prediction of ultimate cost. Thus we calculate the
mean square error of prediction between two accident years, now let k > i:

MSEP__ (CDRi(I +1)+ CDRi(I +1)) =

CDR; (I+1)+CDRi (I1+1)

- E[(CDRZ.(I+1) — CDRi(I+1)+ CDR,(I +1)~ CDRi(I + 1)) IDI]:

= MSEP_. . (CDR(I +1))+ MSEP, \ (CDR«(I+1))+

CDR;(I1+1) CDRk (I+1)
+2E[(CDRZ.(I +1)~ CDRi(I +1))(CDR, (I +1)~ CDR«(I +1))| D,] -

= MSEP_. . (CDRi(I +1))+ MSEP, \ (CDRi(I+1))+

CDR;(I+1) CDRy(I+1)
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+2E[CDR.(I +1)CDR,(I +1)| D,]- 2E[CDR;(I + 1)CDR, (I +1)| D, ]+

=0 =0

+2E[CDRZ.(I+ 1)CDRi (I +1)! D,]— 2E|:C/D72i(1+ 1)CDRk (I +1)| D,] -

= MSEP, .., (CDRA(I+1))+ MSEP5,, . (CDRe(I+1))+

CDR;(I+1) CDRy(I+1)

(v}, + E[CDR(1+1)I D, |E[ CDRx(1+1) I D, )

where v = Cov[C/f)Tii(I +1),CDRy (I +1)! D,] - Cov[CDRi(I +1),CDRy(I +1)| D,].

In order to obtain an estimation for ! we will use again the properties a)

and c) of the Lemma 2.5, so we have for k > i > 1:

I

Wik

Cov(CDR(I +1)~CDR,(I+1)I D, )

Cov[CJ*' —E[C; ID,,], CH I D, 1=

E[(C}*' —EIC, 1 D,]) CL, 1 D, 1- E[CJ" — EIC, | D,1IEIC), | D, 1=

E[C}' Cl' 1D, 1- E[E[C, | D,ICL 1 D, 1+

E[Ckl k+1 ID ]H] I-k+1 [J?j”l | DI:|CI',I—z'fI—i(Hg;}f’f+1 E[ﬁ”l | DI]_H][;}—kJrI}:jI):
I-i-1 TI+1 I+1 a1

E[Ci 1 g1 | DTS g |:f] |D1:| i1 1+1f1 | D, H 1+1E|:(fj ) |D1:|+

E[Ck,l—k+1 |DI]E[Ci,I—z+1 } k+1f:1+1 |D ] } i+1fj +

E[ k,I-k+1 |D ]Hj ; }H»l [}}IH |D1]Ci,1—ifl I(Hf Il i+1 [}}Iﬂ |DI]_H][‘;}—i+1fA}I):
I-i-1 I+1 I+1 211\

E[Cklk+1|D]H]Ik+1 [f |D]E[C111+1fl |D]H]11+1E[( j ) |Dl]+

E[Cy 1 |D ]H] I-k+1 I:fj1+1 |D1]H§;}—i+1 ij[Ci,I—z’+1 II—+i1:|+

E[Ckl ka1 I D ]Hj ; }<+1E|:f”1 ID ]Czl ifi z(n =1 71+1E|:J?jm |D1:|_H]]';}4+1JAC]'I):

EIC, ¢ | DTS E[ F11D, ]

EIC, -in 1’_*3lDI](H};}_mE[(f”l) D, |- n;;;_mjzls[(ﬁ“)lnf])
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- EIC, o DIE[ 10 L[5 2. -k [ 7)1
(48)

now using the properties b), e) and f) of the Lemma 2.5, it is possible to
substitute the estimates of the moments conditional to I of the coefficient
at time I + 1 with the estimates of the factors and the variances at time [ and
the estimation

51 V2 A2 I+1  FI 52
I A (fl—i) Ciri +61iCi i +510in fHCi/H : /CLM ~
W‘k Ck/I—i T+1 j=1 (fI i 1+1\2 _H j=I- l+1(f1 i =
L Si_i (5, )

I+1
72 Ciri +61 z/(fl i), 51— i+l |y
= kI i fI i z', -1 I—z' I+1 I+1

I+1
S1-i S1-i fI ;

X

CI 1 TI\2
] I z+1((f1 1) + ( 1+1)”] Hg;l—iﬂ(fl—i) =
]

Ciri G2 J(FL)? A C L inZiCor
_ k] , f] Z) C [ z,I—z+ I- z/(fl z) + k=0“k, [-i+1“k=0">k,I-i %

T+ 7 F)
Z). 0 S1_i zk:ock,l—izkzock,l—m

A2 g0 7l \2
2 o /(fi_) _ A
x ] -1 1+1(f1 z) T+ Crj; —HL}—m(fII—i)z =

S )*
22 07l N2 A2 g Tl N2
6 /(fi_i) o /(fii)
_ CC 1+]S];—+1) H]Iz+1 1+ ](S]{+1)2 Crji|=1]=
_ ¢ C£](1+z;§_i)(nj i (146707 ) 1)~
LS = ), )

where 2;? = 6]2»0 ;is the coefficient of variation normalized to the square root
basis for calculation of the factors at time I + 1.
For the error term between two accident years we always refer to the

conditonal resampling tecnique; first we calcolate the following expression
with the help of the properties b) and c) of the Lemma 2.5.
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E[C/D\Ri(1+1)|D,]E[C/[ﬁzk(ul)m,]:

I
= Cz’,I—iCk,I—k [Hf } zf] - fi- zH; } z+1[ I+ f] +f] 1+]1]]} (50)

1 IJJ
x[ ka] fIk ]Ik+1[ I+1f]+f] I+1 ]}

now we write the expectation of (50) as:

I-i-1

E| E[CDR«(1+1)1 D, |E[CDRu(1+ )1 D, | |=C, ..Cy 1 H, ]-E_[k £ e

whereHZ, is:

I 2
o - () ]+fIZHHI+1E[—S;i1f] +f— ] D, |-
]

I 2
S
J-1 j I//
_Hjli+1E|:[ I+1 j fj I+1 ] |DI
S
] l
2 1 2
(¢ s. O
] ] ] 2
Z[SI +f]} fIz j=I- z[sl+1 SI +fj}+
j j j

1.2 I1_2
S.G; 5.0
f HZI it f HZI 177 +f2 —
j=1-i SI+1S]I j j=I-i RO j

i

I
— f[ 1H{ } i+1 l[ I+1 f f I+III]

Il
’:l

= Zf(HH,(n]?H) M (o2 +1) -T2, (ogn? +1) -

Q

=
T

-
N
—_—

™
T

W+ 3o — 20 o)) =
= Hﬁ;}—zf]z (n? i OLI an 125 } z+1(1_(xj)2n]2'):

= H?;}—i sz (UI—Z'T]%—I +2{ 110 in; ) (52)
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. _ 2 J-1
Wlth Ai] _vl—inl i E] I-i+1 ]n]

Finally the expectation in (51) is:

I-i-1 -
E[E[CDRZ-(I+1)IDI]E[CDRk(I+1)IDI]] iCor [T/ Hf] 1 (53)
I-k j=I-i
and its estimate:
E[E[C/ﬁ&(lﬂ)|D1]E[C/5Rk(1+1)|DI]]zzc,.J,,.ckH N ; o f2A, =CiClA,
Ik j=I-i

with Az] =, M 1+2] 1-i+1 9} n]

The estimation of the mean square of prediction in (45) for the observed
CDR

from the true CDR is:

]@zfﬂ CDR; (I+1)ID, (2{21 C/D\Ri(l + 1)) =

o e N 55
=Xi_, MSEPcpr,(1+1)p, (CDR"(I + 1)) +2Z,50 Gy Cy (AU * Py ) ~

The mean square error of prediction for overall generation trought the
decomposition of (46) in the following way:

MSEP,; 5 oyp, (0= Var[(ZCDR (I+1)J|D ]+E[(ZCDR (I+1)JID ]

i=1 i=1

(56)
the total variance can be decomposed in the classical manner:

Var[[ic/ﬁz,-(lﬂ)] | DI] = iVar[ﬁi(I+1) | DI:|+22COU|:(3/I)\&-(I+1),@72k(1+1) | Dl]

i=1 i=1 k>i

(57)

keeping in mind that Var [ﬁi(l‘i‘ Dl D,] =Var I:éf]” I DI:I we obtain the

following expression:
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= E[C}/i 1D T HlE[(fj’”)z ID ]—E[Cl 1o | DTV 1+1E[(}j’+1)| D,:Iz -
N R 2
:(flz_iciz,l—i +G%—ici,l—i)H]]=} 1+1E|:(fj[+1) ] fi zclzl znf Cin E[(f-j“l)l DI]

(58)
and its estimation is:

var| € 1D, |=

-1 jCI -j/J 1 TI\2
((fI 1) CzI 1+GI 1C11 1)[ =]- 1+1(f}) + (SI+1) ] (fl 1) Czl —i I—i+1(fj) =

A2y f1\2
o7 I(fL) _ . o; /(f;)
=(fiL,) CII z[ = Cz,]—lz ) §=}—z’+1(f]'1)2 [1+_(]S]I-+1])2 _CI—]'JJ:

2((1+e I (146207 ) - 1)z

J-1
cf, 0L, +2 0007 +67, 2
j=1-
=0
(63 (642127
- (ézII )2 Ty (59)

while the covariance is:
I+1 I+1
Co[Cj*,Cif" 1D, |=
= E[C, ., | D,ITTZ2L L E| 11D F DL E|(F “Ip,
- k,I-k+1 1 j=I-k+1 j 1 zI i+1J1 1+1
I+1 TI+1
- E[Ckl k+1 D ]H] I-k+1 [f D ]E[Czl i+1 | D ]H] I-i+1 I:f] |D1]=

= E[C, 1 | DN E[ 711D, ]
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 (E[Cu i D () 101 - By D D () 0

(60)
and the estimation is:

COU[C{,”,c;“ | DI]

=CyCy ((1 +47. )H]]-;}_m (1 +o, ) - 1) =
~Cyy (B2l ])
(

A~ A (A2 J-1 02
_Ck]Ci] 070 E =I- z+191 i
i

(61)
the second term of (56) can estimate as:

E[E[(zleﬁi(Hl)) | D,ﬂ: = E[E[(C/ﬁzi(ul))l D,]2]+

+23, . E [ [CDR:(1+1)1D, ]E [@Tzk(nl)m,]].

CyCyhy

(62)
Finally the estimation of mean square error of prediction for CDR from
zero for overall generation is:

1
A A A N =1
MSEPE’ CDR; (I+1)ID, (O): EMSEPC/D\R,'(I+1)ID, (0) + ZECMCU (Ai} =y ) (63)
i=1

k>i

5. THE GREEKS

In order to calculate in a convenient way the MSEP of CDR it is useful
calculate the Greeks used in the previous sections. We distingued between
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small Greeks and Capital Greeks. Then the MSEP can be estimated both small
Greeks and Capital Greeks with tailor made formula. For better understanding
we resume the Greeks:

~2 2
~ _Oj / i .
° n; 7/
5j
. 815
[ e] =
CI—z',j
o 0=Cpy/S"
A2y g2
~ o/ f R
. Cjz =7 =9]20]-
5
A2
o . - S
from previous figures we can derive the useful relation M T % =~ the
Yj
proof is quite easy and it is the following:
A2 2 I
ﬁ+62 _(5{1 1 ]__](S +C1j,j]:
j 7| Tqlo
f] CI—J',J' f S; G i
ja I+1 A2
=(5]-/f]- S;" _n (64)

0.

I
S]- CI—Z',]' j

The code in Listing 3 can be used to calculate the small Greeks, while the
results for the usual triangle are reported in Table 5

Listing 3: Code for Table 4: Estimation of small Greeks.

#The Code 1 and Code 2 nust be runned before this.
theta2 <- (betan2)/Last.Di ag[devl+l, ‘G j’]

theta <- sqgrt(theta2)

nu <- Last.Diag[devl+l, ‘Cij’'] / S_I1[devi+l]
nu2 <- nu"2

zeta2 <- theta2*nu

zeta <- sqrt(zeta2)

Table.5 <- chind(eta, theta, zeta, nu)
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Since 0 is connected to the process error decreases more quickly for
development year than n and ( are connected to the parameter error.

Table 5
Estimation of small Greeks. The output is made by the code 3

A A N

j n 8 S Y,

0 0.0212 0.0864 0.0206 0.0569
1 0.0106 0.0432 0.0103 0.0563
2 0.0066 0.0245 0.0064 0.0677
3 0.0066 0.0235 0.0064 0.0738
4 0.0056 0.0173 0.0054 0.0965
5 0.0040 0.0104 0.0037 0.1264
6 0.0078 0.0178 0.0071 0.1619
7 0.0038 0.0077 0.0034 0.1937
8 0.0038 0.0074 0.0034 0.2077
9 0.0056 0.0094 0.0048 0.2630
10 0.0189 0.0271 0.0155 0.3271
11 0.0086 0.0090 0.0062 0.4779

The small greeks
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Figure 2: Comparison of small Greeks as reported in Table 5
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The Capital Greeks can be computed through the small Greeks in the
following way:

N 7-1 242,
* Ay =ML+ ELLavng;

. é) 2 ,+1v 292;

° \i/:elz .
. B oy,
° A]=0117711 2111+1vn]

= 92 -1 p2.2_ #2 12,
* Ey=0iL0+E 00 =0+ 2000

In order to estimate the MSEP of the CDR for a single accident year, we
can compute the (44) with the following alternative:

Ay+T, =R, +62, +=/ (77]2-4'9]-2)0?

j=I-i+1
77 i ~2 65
=1L 2111+1n] i (65)
Ur_i
thus the (44) can written as:
- Rl
MSEPepr; (1+1yp, (0) = (CZI]) #—i— 17]20]- , (66)
I-i jel-isl

in a similar way we obtain @, +A, =7, +%/.]_,,,77v;, and it can be

substitute in (41) and it becomes:

J-1
MSEPGBR; (1+1)D, (CDR{(I—#-I))) (CZI]) {T]I ; f]fv]] (67)
+1

j=I-i

Also the (63) has an alternative form, so we derive the following relation:

Ay +E;=v._ M+, 19 +2; - z+1(ﬁ] +9]‘)U? =
-1 (68)

:7711 2 =I- l+1n] j
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So the MSEP of CDR from 0 in (63) can be also calculated by means of
small Greeks:

1 J-1
o A A a2 ~D
MSEPE,LI CDR; (I+1)ID; (0)= Z;/MSEPC/ER,(IHMDI (0)+ 22 CkICiI {771—1' + ' 2 nj UJ]’

k>i j=I-i+l

while for (55) we use ;\U + qA)Z-] =00 +Z2 0,

@zfﬂ CDR;(I+1)ID (Ele CDR; I+ 1)) =
= 25:1 ]@@2,(1+1)|D1 (C/DTQZ'(I + 1))+ 2% 000 éf]é{(] (ﬁ]z—ivl—i + 2]]-;}_1-+1ﬁ]2-’()]- )

(70)

Using the small Greeks figured in Table (5), then the computation of

MSEP for CDR is very simple via (66), (67), (69) and (70). In Listing 4 are

reported the instruction to calculate the MSEP for CDR, both 0 than true
CDR. The results are showed in Table

Listing 4: Code for Table 6: Estimation of MSEP with
small Greeks.

#The Code 1, Code 2 and Code 3 nust be runned before this.
## equation (66), estimation MSEP of CDR from true CDR
MBEP. CDR. True <- rep(0, n.origin)

MBEP. CDR. True[ 2: n.origin] <-

(hat_G J[2:n.origin]"2)*((eta2)[(n.origin-1):1] +

c(0, cunmsum((eta2*nu)[(n.origin-1):2])))

## equation (65), estimation MSEP of CDR from zero
VBEP. CDR. Zero <- rep(0,n.origin)

MBEP. CDR. Zero[ 2: n.origin] <-
(hat_CiJ[2:n.origin]”2)*((eta2/nu)[(n.origin-1):1] +
c(0, cunmsum((eta2*nu)[(n.origin-1):2])))

## equation (69), estimation MSEP of CDR from true CDR

covari ance <-

2*sum(hat _CiJ[2:n.origin]*((eta2*nu)[(n.origin-1):1] +

c(0, cumsun((eta2*nu)[(n.origin-1):2])))* c(cunsum hat_Ci J[ n.origin:
3])[(n.origin-2):1],0))

MBEP. CDR. True. Tot <- sum(MSEP.CDR. True) + covari ance
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## equation (68), estimation MSEP of CDR from zero

covari ance<-2*sum(hat _CiJ[2:n.origin]*((eta2)[(n.origin-1):1]
+

c(0, cumsum( (eta2*nu)[(n.origin-1):2])))*

c(cumsun{hat _CiJ[n.origin:3])[(n.origin-2):1],0))

MBEP. CDR. Zer 0. Tot <- sum(MSEP. CDR. Zero) + covari ance

Tabl e. 6 <- rbind(chind(
MSEP. CDR. Tr ue”™0. 5,
MSEP. CDR. Tr ue”0. 5/ hat _R i,
MSEP. CDR. Zer 070. 5, MSEP. CDR. Zer 070. 5/ hat _R i,
( MSEP. CDR. Zer o/ MSEP_hat Gi J) 0. 5),
c( MBEP. CDR. True. Tot 0. 5, MSEP. CDR. True. Tot 20. 5/ sum(hat _R i),
MSEP. CDR. Zer 0. Tot ~0. 5, MSEP. CDR. Zer 0. Tot *0. 5/ sum( hat _R i),
( MSEP. CDR. Zer 0. Tot/ MSEP_MACK t ot ) ~0. 5

)

Table 6
Estimation of rMSEP with the Merz Wiithrich model.
The output is made by the code 4

MSEP ,, (CDR) rMSEP,, (CDR)/R ~ tMSEP,, (0) ~rMSEP., (/R rMSEP,(0)/C,

0 0 - 0 -

1 1,915 10.93% 2,770 15.80% 100.00%
2 4,473 16.56% 7,580 28.05% 95.12%
3 3,338 9.44% 4,059 11.48% 45.75%
4 3,247 7.69% 3,717 8.80% 40.92%
5 3,785 6.37% 4,368 7.35% 42.32%
6 4,269 5.77% 6,599 8.93% 56.52%
7 3,505 4.34% 4,389 5.43% 39.17%
8 3,097 3.81% 4,817 5.93% 44.66%
9 2,650 3.30% 4,926 6.14% 46.79%
10 2,626 2.76% 5,007 5.25% 44.20%
11 2,650 2.51% 7,137 6.76% 56.88%
12 4,163 2.83% 14,772 10.04% 75.49%
Tot. 32,534 3.85% 42,707 5.05% 65.52%

6. CONCLUSIONS

The paper has the aim of revisiting the formulas of the Mack model and
the model in [Merz and Wiithrich(2008b)]. The goal is achieved by a
different formulation through the small Greeks instead of the Capital Greeks
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used by [Merz and Wiithrich(2008b)]. The main difference between the
two formulations is that the Capital Greeks are defined by accident year
while the small Greeks are defined at level of development year, thus
allowing to analyze the behavior of volatility for development year. This
alternative definition has several practical implications, since the small
Greeks do not depend on the volume measure of the single accident year,
they can be used to compare the evolution of volatility over time between
different lines of business of a same undertaking or a particular line of
business among different undertakings. Moreover when for a small business
or for a start-up volatility cannot be estimated due to lack of data, the small
Greeks can be estimated on a similar line of business (e.g. estimated on the
parent company) and used in order to estimate the volatility of CDR. Also
for triangles with few development years we can extrapolate the future
values of small Greeks so we are able to estimate the volatility taking into
account the evolution of payments beyond the last development year of
the run-off triangle. The paper also provides the R code to replicate the
calculations of small Greeks and MSEP, for ultimate volatility and one-
year volatility.

In practice, the model has provided the mean (845,851) and the standard
deviation (42,707) of the CDR’s one year distribution. Provided that the
observed CDR for the next balance year equals to 5,475 we can make a
normal distribution assumption and refer CDR to the 55.4% percentile of
the distribution highlighting a good performance of the model. Also,
following [Merz and Wiithrich (2008b)], comparing the observed CDR with
the root of prediction error from the true CDR (32,534) we can conclude
that the true CDR could be either positive or negative.

REFERENCES

[Bithlmann et 4l.(2009)] Bithlmann H., De Felice M., Gisler A., Moriconi F. and
Wiithrich M. 2009. Recursive Credibility Formula for Chain Ladder Factors and
the Claims Development Result. ASTIN Bulletin Volume 39, Issue 1 May 2009,
pp. 275-306.

[Cavastracci and Tripodi(2018)] Cavastracci Strascia, S., Tripodi, A. 2018. Overdispersed-

Poisson Model in Claims Reserving: Closed Tool for One-Year Volatility in GLM
Framework. Risks 2018, 6, 139.

[Hindley(2017)] Hindley David. 2017. Claims Reserving in General Insurance. Cambridge
ISBN 9781139924696.

[Mack(1993)] Mack T. 1993. Distribution-free Calculation of the Standard Error of Chain
Ladder Reserve Estimates. ASTIN Bulletin 23,213-225.

[Merz and Wiithrich(2007)] Merz, Michael, and Mario V. Wiithrich. 2007. Prediction

error of the expected claims development result. Bulletin Swiss Assoc. Act.,no. 1,
117-137.



126 Stefano Cavastracci

[Merz and Wiithrich(2014)] Merz, Michael, and Mario V. Wiithrich. 2014. Claims Run-
off Uncertainty: The Full Picture. Geneva: Swiss Finance Institute. SSRN Manuscript
2524352.

[Merz and Wiithrich(2015)] Merz, Michael, and Mario V. Wiithrich. 2015. Stochastic
Claims Reserving Manual: Advances in Dynamic Modeling. Geneva: Swiss Finance
Institute SSRN Manuscript 2649057.

[Merz and Wiithrich(2008a)] Merz, Michael, and Mario V. Wiithrich. 2008a. Stochastic
Claims Reserving Methods in Insurance. Wiley Finance ISBN: 978-0-470-72346-3.

[Merz and Wiithrich(2008b)] Merz, Michael, and Mario V. Wiithrich. 2008b. Modelling
The Claims Development Result For Solvency Purposes. Casualty Actuarial Society
E-Forum.

[Wiithrich et al.(2008)] Wiithrich, M.V., Merz, M., Lysenko, N. 2008. Uncertainty in the
claims development result in the chain ladder method. Scandinavian Actuarial
Journal 1-22.

[Vv.Aa. (1989)] Claims Reserving Manual, Section F Vol. I. Faculty and Institute of
Actuaries.



