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Abstract: This paper examines the efficiency of the forecasting properties of time
series models, namely the ARIMA and hybrid ARIMA-GARCH models on daily
data of Gold prices for the period 2018 to 2019. First, the paper assesses the unique
features of financial data, particularly volatility clustering and fat-tails of the return
distribution, and addresses the limitations of using autoregressive integrated
moving average (ARIMA) models in financial economics. Secondly, it examines
the application of GARCH models for forecasting of both conditional means as
well as the conditional variance of the returns. Moreover, using the standard model
selection criteria such as AIC, BIC and SIC, the forecasting performance of various
candidate ARIMA and GARCH models are examined for an out of sample period.
The findings of this paper are that a hybrid ARIMA-GARCH model performs
better than an ARIMA or GARCH model by itself in terms of forecasting the returns
and volatility of Gold price series. In summary, while ARIMA models have shown
the ability to capture the autoregressive process, GARCH models had to be utilised
to capture the intense volatility of the Gold commodity. The empirical results
obtained in this paper could guide investors to manage risk and return better on
their investment decisions.
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1. Introduction

1.1 Background

In recent years, an increasing concern is emerging about predicting the
future prices and returns of stock prices or commodities. A basic
characteristic that all financial markets have in common is the uncertainty
of the short and long term price values. Individual investors whose aim is
to maximize their profits are looking for methods to precisely forecast the
movements of the index or stock prices. Financial institutions and investors
need an effective strategy to take decisions based on everyday predictions
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for the markets and such forecasts are extremely difficult to achieve due to
the complexity of the financial markets. To date, various models have been
generated for the purpose of predicting future prices. As per the literature,
two different forecasting approaches are utilised, the Artificial Intelligence
Technique and the Statistical Techniques (Saini, Singh and Laxmi, 2016).
The most popular models for short term prediction in the field of financial
series are ARIMA models.

This paper focuses on building different price forecasting models and
comparing them to identify the most accurate model for forecasting the
Gold commodity price. Accuracy in the forecasting of Gold prices is vital
for all market participants as this metal is very different from other assets:
it is extremely liquid, it conserves its value over time, it plays a central role
in international currency reserves and it also promotes the stabilization of
international money market (Tripathy, 2017). An example of this
distinctiveness can be found in its performance during the financial crises
period 2008 -2009 when its global price increased on an average 6% while
most of the other mineral prices dropped 40% (Tripathy, 2017). This
behaviour is clear evidence that Gold is generally perceived as a safe haven
on stock market direction, a belief that many studies support (Baur and
McDermott, 2010; Baur and Lucey, 2010; Takashi and Shigeyuki, 2014).
Indeed, it is not a casualty if most of the academics believe that an increase
in Gold price is a premonition of a fall in the price of other financial assets:
in fact, it has been observed that Gold price is not only a reflection of inflation
expectations but that it is also highly correlated to other assets such as stocks,
bonds, oil prices and foreign currencies (Corti and Holliday, 2010).
Therefore, an accurate prediction of Gold prices is very important as it
provides a glimpse of future movements in the financial markets as a whole.
By developing an accurate forecast on Gold price, investors can profit or
hedge to minimize their losses.

Many attempts have been made by researchers to predict future price
movements with various forecasting models in the literature. Investors are
also utilizing algorithmic trading with the purpose of making rational
investment decisions. Although most of the companies nowadays tend to
operate statistical techniques, the most common forecasting models are the
ARIMA and GARCH models. Depending on data limitations and
characteristics, different models are applied for the purpose of forecasting
future prices. Some of these forecasting models are the Value At Risk (VAR),
the autoregressive conditional heteroscedasticity (ARCH), Autoregressive
Moving Average (ARMA) and the random walk model. This study focuses
on the Autoregressive Integrated Moving Average (ARIMA), the
generalized autoregressive conditional heteroscedasticity (GARCH) and
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the threshold generalized autoregressive conditional heteroscedasticity
(TGARCH). These models were chosen as they represent the most widely
used and accurate models for short term price series forecast such as Gold
price series index.

1.2. Research Aim

The aim of this paper is to discover the most adequate model for predicting
Gold returns and based on that to help financial institutions and individual
investors make rational decisions on maximizing their profit margin using
the Gold commodity price movements. There is a constant need for
researchers and investors to estimate the future prices and their variances
of financial assets and hence multiple tools were created (random walk
theory, VAR, ARCH-GARCH, and ARIMA). This paper examines different
ARIMA and GARCH volatility forecasting models in terms of accuracy
and consistence for daily Gold price series data of 345 observations in the
period 2018-2019. The findings of this research will be useful for investment
decisions as the knowledge of the Gold price movement may lead to
investment decisions that maximize the profits or minimize the losses, as
Gold is an important commodity that reflects inflation and markets
movements.

1.3. Structure

In the first section, the aim and overview of the research were provided.
Section Two is a review of relevant literature. This part presents a critical
review of the most relevant articles on the subject of this research. Section
Three explains the design of the research, methodological choices made
and data sources. Section Four presents the results of the analysis conducted
with interpretations and discussions while in Section Five, the conclusions
of the research and recommendations for future research are presented.

2. Literature Review

In this section, literature on the topic of the research is reviewed and critically
appraised. In the last decade, an immense need to predict stock prices and
returns has arisen. Investors aiming to maximize their profits, investigate
every possible way to forecast market movements of prices and volatility
in the stock market as precisely as they can. In the past, predicting market
movements was impossible, as for prediction, complex computing on past
data was needed. However, the vast developments in technology and
computer science in the last twenty years have given investors the tools to
compute extremely complex calculations very quickly, hence now many
investors are managing their investment decisions on algorithmic trading
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and and volatility forecasts generated by various softwares. This study
examines four different forecast volatility techniques on Gold price series
index for daily data. Thus, the literature review is divided in two main
sections. In the first section, previous research on Gold price forecasts and
their relationship with commodities price series is reviewed. The second
part of the literature review, focuses on explaining and analysing different
forecasting models that are demonstrated in this report. More specifically,
the history and the various findings on the ARIMA and GARCH models
are described.

2.1. Gold price forecasts and relationships with relevant variables

As Gold price can be an important indicator of market conditions, many
surveys have been conducted to find the relationships between Gold price
and other factors such as inflation, interest rates, exchange rates, money
supply etc.

A study conducted on the Thai Gold price utilizing multiple regression
and the ARIMA model concluded that the American, Australian, Canadian,
Japanese currencies are significantly important to the Thai Gold price
(Khaemusunun, 2009). The impact of different currencies, the oil price and
the interest rates on Thai Gold price were examined using the ARIMA and
the multiple regression models. The ARIMA (1, 1, 1) was found to be the
most suitable model for predicting Thai Gold price. Another research on
Gold price series (Ismail et al., 2009) using the Multiple linear regression
(MLR) model suggested that the inflation rate, money supply and the USD/
Euro exchange rate have a significant impact on Gold prices. However, a
study by Kuan Min (2011) found that the relation between Gold price and
inflation was opposite: the return on Gold is unable to hedge against
inflation either in Japan or the United states in the short or long term, when
inflation hedging strategies using Gold were tested.

Evidence of the relationship between exchange rates and Gold returns
in the short run and the long run was the empirical result of another article
that applied the interval method to explore the relationship between the
Australian dollar exchange rate and the Gold price (Ai, 2012). Many studies
related to Gold prices seek to investigate which model is the most adequate
to predict Gold price. The empirical findings differ depending on the data,
the time period and the number of observations. On the one hand, ARIMA
(0, 1, 1) was found as the most suitable model at forecasting the Gold price,
when ARIMA models were examined to forecast Gold prices (Massarrat,
2013), but on the other hand, the GARCH model was found more accurate
than ARIMA model for predicting the Gold prices when the two models
were compared using the Gold prices from Malaysia (Pung, 2013). Another
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approach supported the ARMA model and 6-step-ahead forecast model
for predicting the monthly adjusted closing price of Gold, when compared
with the original corresponding price and the actual prices are inside the
forecast interval (Rebecca, 2014). The dynamic relationship between Gold
prices and the real exchange rates in Australia using the error correction
model proves that the Gold price is a good indicator of the Australian dollar/
USD exchange rate. This shows that Gold price information can be used to
forecast the Australian dollar/USD dollar exchange rate (Nicholas, 2014).
Parametric and non-parametric time series can be also used to estimate the
forecast of the Gold prices. However in this study the findings are not
accurate either in the short or in the long run. Consequently, the univariate
models have been found to outperform the multivariate models in terms of
forecasting accuracy (Hossein, 2014).

In summary, various studies on Gold prices were examined and
evaluated. Many studies argue that Gold prices are related to inflation and
the exchange rates and in some cases they were also found to have a
predictive content. However, in terms of the better performing model for
predicting Gold prices the empirical results differ a lot.

2.2. ARIMA and GARCH models

The continuous interest of investors to formulate a model to provide
accurate forecasts of the price series and the variance resulted in various
forecasting models with different limitations and strengths. The most
commonly used models are the ARIMA and GARCH models.

The ARIMA model was first introduced by Box and Jenkins in 1970. It
is also named Box and Jenkins three stage methodology that consists of a
set of activities for identifying, estimating and diagnosing the model. Many
researchers have found that the ARIMA model has been efficient in
generating short term forecasts for financial time series. The limitation of
this model is that the financial data usually present many irregularities
making the calculations more complex.

To address the heteroscedasticity problem, autoregressive conditional
heteroscedasticity model (ARCH) was introduced in 1982 and it is a model
that describes the variance of the current error term as a function of the squared
variance of previous periods (Engle, 1982). In 1986, the generalized
autoregressive conditional heteroscedasticity model (GARCH) was
introduced. This model included the current error terms that are also
correlated with the past error terms apart from the variance (Bollerslev, 1986).

Many researchers support the ARIMA models for forecasting the price
series. One study experimented on removing the difficulty in deciding the
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order of an ARIMA model using the minimum AIC estimation procedure
which resulted in almost identical results as those of the Box and Jenkins
procedure (Ozaki, 1977). A more recent study on the Nigerian stock market
for the period 1985 to 2008 examined the trend on the price series data by
applying the ARIMA model. The ARIMA (2, 1, 2) model performed the
best using the MAPE and MAE as estimators for the forecasting error
(Abdullahi & Bakari, 2014). In addition to that, an experiment on cassava
monthly prices in Ghana using ARIMA model demonstrated a good
performance in terms of clustering volatility and predicting power (Kwasi
& Kobina, 2014). Furthermore, a survey carried out in data obtained from
the New York Stock Exchange and the Nigerian Stock Exchange using the
ARIMA model illustrates that there is potential in the model for predicting
stock prices on a short term basis (Adebiyiet, 2014). Moreover, a survey
utilizing the ARIMA and the state space modelling on India found that
ARIMA and state space modelling was close to the real time yields (Vermael,
2015). Last but not least, the nine year daily data of the Indian sectoral
stock prices was examined using the ARIMA model and showed that the
ARIMA (1, 1, 0) is the most accurate model for forecasts. As stock prices
have an upward trend, they could be a worthy investment (Manoj &
Edward, 2016).

After the establishment of the GARCH model, scientists were divided
between the two models for forecasting and evaluating the price series.
The most influential GARCH models were Bollerslev’s GARCH (1, 1) model
and Nelson’s EGARCH model (Engle, 2002). A research examining whether
the GARCH or the implied volatility models perform better was published
right after that. The result was that it depends on the data sample and the
time series but the findings of some researchers indicated that implied
volatility models tend to perform better than GARCH models in the out of
sample forecasts (Poon & Granger, 2002). The limitation of the GARCH
models is the assumption that history repeats itself in patterns so the future
prices can be estimated based on the previous prices.

The theory questioning the GARCH models is called “random walks”
and support that the future path of the price is independent of the past values
and follow a series of random numbers and the prices have no memory
therefore GARCH cannot be used as a forecasting tool of the future prices
(Fama, 1965; Lock, 2007). The previous theory is based in some research where
the findings show that the volatility does not follow the normal distribution
but kurtosis is noticed with fat tails (Petrica, Stancu & Tindeche, 2016).

On the other hand, many empirical studies have been conducted to
clarify whether random walk theory applies and in many cases the GARCH
models are proven to be accurate in the forecasting results (Lo & McKinley,
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1988; Chang & Ting, 2000). One possible solution for the sudden changes
in volatility and the fat tails of the distribution would be to apply k-mean
clustering in the model and the after normalization of the model apply the
ARIMA models (Badge, 2013).

It is evident from the prior literature that many price and volatility
models exist in the literature, thus selecting the appropriate model has
significant contribution to the investment decisions. The main forecasting
models presented in the literature are the ARIMA, GARCH, random walk
and the implied volatility forecast models. The contribution of this report
to the prior literature is to examine the Gold price series for the period 2018
to 2019 by estimating the ARIMA and GARCH models, generate out of
sample forecasts to decide the dominant model and based on that to advise
investors of the validity of these models for predicting Gold returns.

3. Data and Methodology

3.1. Data

In this section, the data used for the estimation of the different forecasting
models will be examined. The data used for this analysis was obtained
from Bloomberg, a private financial, software and Data Company whose
software is used worldwide by traders and investors. For this report, a
sample of daily data of the Gold price index from 02/01/2018 to 29/04/
2019 was collected. “The clean or flat price index reflects the position when
the accrued interest element is stripped out of the gross index”. The incentive
of daily data for this specific period is based on two different reasons. Firstly,
as Gold is one of the most important commodities, the results of this research
will depict the impact of different factors in the economy such as inflation
or unemployment rate. Secondly, this specific period was selected as the
aim of the report is to evaluate different forecasting models in terms of
accuracy and make an out of sample forecast based on the findings. As
prices change often, recent and daily data are considered relevant factors
for testing the efficiency of prediction models. Less frequent data (weekly,
monthly) is less likely to be accurate. The data series will be examined for
stationarity which is a condition for estimating forecasting models.

3.2. Methodology

3.2.1 Introduction

In this section, the methods and tools used to develop models predicting
Gold prices are presented. Research can be conducted using a qualitative
or quantitative approach. The Qualitative approach in research is a non-
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statistical method in which the data are mainly obtained from words, images
and numbers and are mainly utilized in the social sciences or educational
research. The Quantitative approach follows an empirical investigation of
phenomena using statistical, mathematical or computational techniques.
This technique is mainly utilised to test hypothesis using numerical data
and to reveal the relationship and trends between variables. In this case,
the researcher is testing a hypothesis in a sample of the population and
trying to attain unbiased results that represent the whole population.

The quantitative approach in this project focuses on examining various
models that forecast the returns and the residuals and based on that, the
dominant model is identified and used for out of sample forecasts on Gold
returns. Firstly, the price series will be examined to ascertain whether they
follow the normal distribution and also whether they are stationary using
the unit root test. The second part includes estimating the ARMA and
ARIMA models for developing the price series return forecasts. Gold is a
risky asset, and volatility clustering may be a common phenomenon. So in
addition to the ordinary GARCH formulation TGARCH and GARCH-M
models will be tested. The T-GARCH model allows for estimating the effect
of good and bad news on the volatility of the series while the GARCH-M
models allows for the risk to be included in the mean equation. Finally, the
ARIMA and GARCH models’ forecast accuracy and volatility will be
compared to determine the best performing model and this model will be
used to provide out-of-sample forecasts for the Gold returns.

3.2.2. ARMA and ARIMA models

A combination of two processes, the AR (p) and MA (q), to give a new time
series of models called ARMA (p, q) models. The AR (p) is an autoregressive
process where p represents the number of lagged variables that the model
will have. The AR (p) model can be expressed by using the sum operator Ó
as follows:

0

1

p

t i t i t

i

Y Y u (1)

Where Yt is the Gold return at time t and ut is the residuals at time t. The
MA (q) is a moving average model that implicates that depends on the
value of the values of past errors at time t. The MA (q) model’s general
form can be written using the sum operator as:

0

1

q

t i t i t

i

Y u u (2)
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Where Yt is the Gold return at time t, ut are the residuals at time t and
ut–i are the residuals at time t-i. When the return is correlated with both the
previous returns and the previous residuals a combination of the previous
models is applied to capture both the autoregression process and the moving
average process and it is called ARMA (p, q) model. The general form of an
ARMA (p, q) model is:

0 1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qY Y Y Y u u u u� (3)

Which can be rewritten, using the summations as:

0

1 1

p q

t i t i t i t i

i i

Y Y u u� (4)

An ARMA (p, q) model has the assumption of stationarity which applies
only in the AR (p) part of the specification only. In spite of this, most
economic and financial time series shows trends over time, thus the mean
returns of will be different among the years, which means the price series
are not stationary so ARMA model cannot be applied. Thus, to induce
stationarity, a process called differencing is used to remove the trend of the
raw data. The first difference of series are given by the equation:

Zt = Yt – Yt–1 (5)
If after the first differencing a series is stationary then the series is called

integrated of order one and denoted I (1). If the series after the first
integration is still stationary, the second difference should be estimated. In
general, if the series is stationary after d differences then it is called I (d). If
a process has an ARIMA (p, d, q) representation, the has an ARMA (p, q)
representation, integrated d times, as presented by the equation below:

0

1 1

p q

t i t i t i t i

i i

Y Y u u� (6)

A three stage method aiming at selecting a parsimonious ARIMA model
for the purpose of estimating and forecasting a univariate time series was
first introduced by Box-Jenkins (1976).

The three stages of this procedure are:
� Identification: The first stage includes identifying possible ARIMA

model adequate for the time series. A comparison of the sample’s
autocorrelation function (ACF) and partial autocorrelation function
(PACF) may provide several adequate models. When the
assumption of stationarity is violated, the ACF of the series will
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not show signs of decay. The series in this case can be converted in
stationary by differencing. After stationarity is achieved, by utilizing
the ACF and PACF table the p and q orders of the ARIMA model
can be obtained.

� Estimation: the second step includes estimating the various models
identified in the first step.

� Diagnostic checking: This part includes examining the goodness of
fit and accuracy of the model. The normality of the residuals is
verified using Jarque-Bera test on the residuals. Furthermore, the
Akaike Information Criteria (AIC), the Schwartz Information
Criteria (SBC) together with the adjusted R square decide for the
correct order of the various models. The lower the AIC and SBC
and the higher adjusted R square indicate better fit of the model.

3.2.3. GARCH, TGARCH and GARCH-M models

While the ARMA and ARIMA models capture the autocorrelation of the
returns, the number of integrations needed to make the model stationary
and the moving average process, it is critical in some occasions to capture
the clustering volatility of the time series. For that purpose Engle (1982)
introduced the autoregressive conditional heteroscedasticity (ARCH)
models to account for the volatility clustering observed in economic or
financial data, e.g., inflation, stock and exchange-rates returns. The definition
of ARCH model of order p is defined as follows:

2
1

2 2 2 2
0 1 1 2 2

: ( , ) , ~ (0, )

: ...

t t t t

t t t p t p

Conditional meanequation Y f u u N

Conditional variance equation a a u a u a u
(7)

Where Yt is the return series, f is a function of � number of parameters,

a set of information available at a time t-1 and 2
t pu  are the squared residuals

at time t-p. The limitation of the ARCH model is that usually in financial
data to capture the clustering volatility a large order of ARCH model need
to be estimated. Thus, in 1986 Bollerslev introduced the generalized ARCH
model (GARCH) which in its simplest form is equivalent to an infinite
number of ARCH models, ARCH (). This model is called GARCH (1, 1)
and it is easier to estimate as the parameters of the model are less than the
ARCH model. The definition of an GARCH (p, q) model is as follows:

2
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2 2 2
1 1

: ( , ) , ~ (0, )

:

t t t t

p q
t i i t i i i t i

Conditional meanequation Y f u u N

Conditional variance equation a u
(8)
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Where u2 are the squared residuals and �2 is the variance. It is important
to be noted that the residuals in the GARCH models do not always follow
the normal distribution.

Another model from the GARCH family developed to account for good
and bad news effects in markets is called TGARCH. The simpler form of
this model is TGARCH (1, 1) whose form is:

2 2 2 2
1 1 1 1t t t t tu u d (9)

Where dt–1 is a dummy variable, that captures the impact of good and
bad news in the market and takes the value 0 when good news occurs and
1 when bad news occurs in the markets.

If the conditional variance or standard deviation is introduced into the
mean equation, the resultant is the GARCH-in-Mean (GARCH-M) model
(Engle, Lilien and Robins, 1987) where X�� stands for other predetermined
variables which can be introduced into the mean equation, � is the coefficient
of the volatility term and �t is the error term

2

2log( )

t t t t

t t t t

t t t t

Y X

Y X

Y X

�

�

�
(10)

The GARCH-M model is often used in financial applications where the
expected return on an asset is related to the expected asset risk. The
estimated coefficient on the expected risk is a measure of the risk-return
trade-off.

3.2.4. Out of sample forecast evaluation

The aim of this paper is to estimate alternative models for forecasting gold
returns and then to assess which models provide more accurate forecasts.
As outlined in the prior part of the methodology various forecast models
will be evaluated. The models under consideration are: 1) ARIMA models
2) ARIMA GARCH models 3) simple GARCH model. Each of these models
have their advantages and some limitations.

The method used for the evaluation of the three different models in
this paper consists of various steps. Firstly, each model is divided in two
parts, the in sample period and the out of sample period that is exploited
as a vector for comparing the forecasts with actual data. Secondly, using a
rolling window of a constant size for each model the out of sample forecasts
are computed. Afterwards, the actual data are compared with the results
of each model’s forecasts to identify the accuracy of each model respectively.
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Theil coefficients which capture forecast accuracy in a comprehensive way
are utilized (Pindyck and Rubinfeld (1997) and Makridakis et al. (1998)).

4.. Analysis and Findings

4.1. Introduction

The purpose of this section is to present the empirical results from the tests
made in this research. After testing different families of ARIMA and GARCH
models, the best models will be identified in terms of accuracy and goodness
of fit. Then, the forecasting ability will be examined using also the GARCH,
TGARCH and GARCH-M models. Statistical tools will be used to examine
which of these models is more adequate to determine the future price and
volatility of the Gold index.

4.2. Data plot, Descriptive statistics and unit root test

At first, a graph is plotted of the Gold price series index from 02/01/2018
to 29/04/2019 to examine its behaviour visually. This is presented below
in Figure 1.

Figure 1: Daily data of Gold Index from beginning of January 2018 to the end of April
2019.

Source: Authors’ work

As the graph indicates, the peak price of Gold index was at the start of
2018 around 1360 then a sudden drop is evident until the third quarter of
2018 with lowest price less than 1180. Finally, a slight up rise in the price of
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Gold is clear until the first quarter of 2019. The series above exhibits the
characteristics of a non-stationary series. With the purpose of identifying
various forecasting models, such as ARIMA and GARCH, it is necessary to
convert the daily prices into daily returns. The logarithmic return formula
used is:

1

ln i
i

i

P
R

P (11)

where Ri is the logarithmic return the day i, Pi is the daily price of Gold the
day i and Pi–1 is the daily price of the Gold the day i-1.

Figure 2: Daily Gold Index Returns from the beginning of January 2018 to the end of
April 2019.

Source: Authors’ work

The plot of the returns in Figure 2 provides more valuable information
about the data as there is the phenomenon of volatility clustering as it was
expected from the literature review. The return interval is between -0.02
and 0.02. As expected there is volatility clustering and in some cases big
changes are followed by large changes and small changes by small changes
in the indices. There is no evidence of a trend, and the series appears to
show a tendency to mean reversion. However there may be autocorrelation
in the data. For further understanding of the data and to test for normality
and stationarity the descriptive statistics are examined. The tables below
illustrates the descriptive statistics of the returns:
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Figure 3 below demonstrates the distribution of the returns of Gold
computed by Eviews software.

Figure 3: Plot of the daily Gold Index Returns from the beginning of January 2018 to
the end of April 2019.

Source: Authors’ work

Figure 3 shows that Gold return series does not follow a normal
distribution: it is leptokurtic (K>3) with a positive skew (>0); the JB statistic
is <0.05.

The results of the ADF test on Gold returns is given below in Table 1.

Table 1
Results of ADF test on Gold Returns from the beginning of

January 2018 to the end of April 2019

Null Hypothesis: GOLDRETURN has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=16)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -20.22756 0.0000
Test critical values: 1% level -3.449220

5% level -2.869750
10% level -2.571213

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(GOLDRETURN)
Method: Least Squares
Date: 29/11/20 Time: 15:38
Sample (adjusted): 4/01/2018 29/04/2019
Included observations: 343 after adjustments
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Variable Coefficient Std. Error t-Statistic Prob.

GOLDRETURN(-1) -1.091374 0.053955 -20.22756 0.0000
C -8.13E-05 0.000321 -0.253415 0.8001
R-squared 0.545427     Mean dependent var -4.58E-06
Adjusted R-squared 0.544094     S.D. dependent var 0.008802
S.E. of regression 0.005943     Akaike info criterion -7.407229
Sum squared resid 0.012046     Schwarz criterion -7.384851
Log likelihood 1272.340     Hannan-Quinn criter. -7.398315
F-statistic 409.1541     Durbin-Watson stat 1.982093
Prob (F-statistic) 0.000000

Source: Authors’ work

Table 1 shows the results of the ADF test for Gold returns and rejects
the null hypothesis of a unit root. If a unit root exists, the data is non-
stationary, and this can cause problems in statistic inference. As the
probability of the ADF statistic is 0, the null hypothesis is not accepted; so
the Gold returns series do not have a Unit Root. After this verification,
ARIMA models are identified in the next sector of the research.

4.3. ARIMA models and forecasts

To select the appropriate ARIMA model Box and Jenkins methodology is
applied to the data, as explained in the methodology section. This
methodology includes testing for stationarity of the series, identification of
the ARIMA models, and testing these models to provide forecasts. Since

Figure 4: ACF and PACF functions on Gold Returns data from the beginning of January
2018 to the end of April 2019.

Source: Authors’ work
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the data for the Gold return series do not have a Unit Root, a visual
representation on the ACF and PACF on the original data will verify if the
returns are stationary or should be integrated.

The ACF and PACF plots show that the auto-correlation function decays,
supporting the inference of stationarity. Next the correlogram is examined
to identify ARIMA models.

Table 2
Correlogram on Gold Returns from the beginning of January 2018 to the end of April 2019

Source: Authors’ work

The correlogram shows that there are some spikes in the plots and the
following ARIMA models are identified: (4,0,4) and ARIMA (4,0,15).
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After estimating the ARIMA(4,0,4) and the ARIMA(4,0,15) models, for
the period 2/1/2018 to 29/3/2019 (leaving some observations for out of
sample forecast) the detailed outputs for which are included in the appendix
(App 1 and 2), model criteria are examined. The coefficients of the AR and
MA terms of the estimated model ARIMA (4,0,4) are not significant, but
they are significant at the 10% level for ARIMA (4,0,15).

Table 3
Model characteristics of Arima (4,0,4) and Arima (4,0,15)

Model AIC SC HQ Volatility Adj R2

ARIMA (4,0,4) -7.3729 -7.3261 -7.3542 3.59E-05 0.0053
ARIMA(4,0,15) -7.3808 -7.3341 -7.3622 3.56E-05 0.0135

Source: Authors’ work

ARIMA(4,0,15) also has a lower volatility and higher Adjusted R^2. So
this is the better model.

The forecast performance of the ARIMA (4,0,15) model is attached in
Appendix 3 which compares the forecast of the ARIMA model with the
actual returns. The findings from this graph can be interpreted as: the
ARIMA model is rotating around the zero mean but it is not capturing
adequately the volatility clustering of the return series. As a result, the
forecast density of the model may not be that accurate to capture the Gold
volatility.

4.4. GARCH models and forecasts

Having identified the ARIMA (4,0,15) as the better model, GARCH models
can now be estimated. In the methodology it was stated that Gold being a
risky asset, T GARCH models (which incorporate the effect of good and
bad news in the variance equation) and GARCH-M models (which capture
the relationship of volatility with the return in the mean equation) would
be estimated in addition to the standard GARCH (1, 1) model. The results
of these estimations are attached (App 4,6 and 7).

Table 4
Comparison of the performance of alternative GARCH models, by specification.

Model AIC SC HQ Adj R^2

ARIMA (4,0,15)-GARCH(1,1) -7.4459 -7.3751 -7.4177 0.0186

ARIMA(4,0,15)-TGARCH (1,1) -7.3945 -7.3119 -7.3616 0.0087

ARIMA (4,0,15)-GARCH-M -7.4198 -7.3372 -7.3869 0.0152

Source: Authors’ work
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Comparing the significance of the coefficients in the equation and the
related AIC, SC, HQ criteria and the Adj R^2 for the models shows that
ARIMA (4,0,15)-GARCH(1,1) is the best performer of the GARCH family of
models tested for goodness of fit of the data. The coefficient of the bad-news
term in the variance of the T GARCH model and the coefficient of the volatility
term in the mean equation of the GARCH-M model are also not significant.

As the distribution of the Gold returns series is leptokurtic, it is just as
well to estimate alternative ARIMA (4,0,15)-GARCH(1,1) models under all
three error distributions (normal error distribution (NED), student-t error
distribution (STED) and general error distribution (GED ). To test whether
the ARIMA-GARCH models have an explanatory power and value over
the ARIMA model, by itself , forecasts needs to be estimated and evaluated.
To estimate the forecasts the same procedure as for the ARIMA model is
followed. First of all, the data sample is divided in two periods: 1) the in
sample period (02/01/2018 to 29/03/2019) and then 2) the out of sample
period which is one month (29/03/2019 to 29/04/2019). Then using the
rolling windows method forecasts are estimated for these 22 days of the
out of sample period using 22 rolling windows one for each observation.
The forecast values from a simple GARCH (1,1) model (App 12) are also
added for comparison. Finally, to evaluate the forecasting error for the out
of sample period, the Theil coefficients (Pindyck and Rubinfeld (1997) and
Makridakis et al. (1998)) are taken into account.

Table 5
Comparison of the forecast performance of the Arima (4,0,15) and Arima (4,0,15)-

GARCH(1,1) models, with different error distributions and the simple GARCH(1,1) model.

Model U1 UM US UC U2

ARIMA (4,0,15) 0.8737 0.0146 0.6643 0.3211 1.0361
ARIMA (4,0,15) GARCH(1,1) NED 0.8603 0.0133 0.6145 0.3721 1.0550
ARIMA (4,0,15) GARCH(1,1) STED 0.8726 0.0152 0.6465 0.3382 1.0597
ARIMA(4,0,15) GARCH(1,1) GED 0.8736 0.0171 0.6590 0.3230 1.0442
Simple GARCH(1,1) 0.9908 0.0061 0.9939 0.0000 0.9563

where
U1 Theil Inequality coefficient
UM is the bias proportion of U2

US is the variance proportion of U2

UC is the covariance proportion of U2

U2 Theil inequality coefficient
Source: Authors’ work

The findings of the table illustrate that the ARIMA (4,0,15) GARCH (1, 1)
model with normal error distribution (NED) has better forecasting
performance than other models when the forecasts are evaluated with Theil
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coefficients: the Arima(4,0,15) Garch(1,1) model with (NED) has the lowest
U1 coefficient and the highest UC coefficient. The simple GARCH (1,1) model
does not have a much better forecast ability than a naïve forecast. A visual
representation of the forecast also supports the findings of this paper; the
graph in figure 5 seems to capture better the volatility than the ARIMA model.
ARIMA (4,0,15)-GARCH(1,1) thus is the dominant forecasting model.

Figure 5: Gold actual returns and GARCH forecast for ARIMA(4,0,15) GARCH(1,1)
Source: Authors’ work

5. Conclusion

This paper presents the extensive process of building ARIMA and GARCH
models for Gold return prediction using the Box-Jenkins methodology of
developing the ARIMA models for short term forecasting. The aim was to
develop and test alternative ARIMA, and hybrid ARIMA-GARCH models
and evaluate their forecasting abilities. Alternative ARIMA, ARIMA-
GARCH, ARIMA-TGARCH and ARIMA GARCH-M models were
estimated using robust testing procedures. Of the ARIMA models identified
ARIMA (4, 0, 15) had the best goodness of fit whilst from the family of
hybrid Arima GARCH models, ARIMA(4,0,15)-GARCH(1,1) NED had the
best statistics. A simple GARCH(1,1) model had no better forecasting ability
than a naïve forecast. Financial data have properties of volatility clustering
and this was overall captured better by the hybrid ARIMA GARCH models.
Moreover, given that Gold returns are leptokurtic, alternative error
distributions were also examined. Over the period of the research from 02/
01/2018 to 29/04/2019 on Gold returns data, the hybrid ARIMA-GARCH
(1,1) NED model had the best out of sample forecasting performance. The
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analysis shows the importance of modelling both the returns and variance of
financial assets for better forecasts. In summary, while ARIMA models have
shown the ability to capture the autoregressive process, GARCH models had
to be utilized to capture the intense volatility of the Gold commodity. The
empirical results obtained in this paper could guide investors to manage
risk and return better on their investment decisions.

Future research

Future research could extend to other financial assets or commodities like silver and oil.
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Appendices
Appendix 1

Estimated ARIMA(4,0,4) Model

Source: Authors’ work

Dependent Variable: GOLDRETURN
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 29/11/20 Time: 04:05
Sample: 3/01/2018 29/03/2019
Included observations: 323
Convergence achieved after 15 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.

C -5.48E-05 0.000282 -0.194600 0.8458
AR(4) 0.275227 0.422739 0.651057 0.5155
MA(4) -0.392308 0.402662 -0.974284 0.3307
SIGMASQ 3.59E-05 2.21E-06 16.19273 0.0000

R-squared 0.014541     Mean dependent var -5.97E-05
Adjusted R-squared 0.005273     S.D. dependent var 0.006042
S.E. of regression 0.006026     Akaike info criterion -7.372918
Sum squared resid 0.011584     Schwarz criterion -7.326136
Log likelihood 1194.726     Hannan-Quinn criter. -7.354243
F-statistic 1.568968     Durbin-Watson stat 2.203578
Prob(F-statistic) 0.196800

Inverted AR Roots       .72      .00-.72i -.00+.72i      -.72
Inverted MA Roots       .79      .00+.79i -.00-.79i      -.79

Appendix 2
Estimated ARIMA(4,0,15) Model

Source: Authors’ work

Dependent Variable: GOLDRETURN
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 29/11/20 Time: 04:08
Sample: 3/01/2018 29/03/2019
Included observations: 323
Convergence achieved after 13 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.

C -4.77E-05 0.000334 -0.142709 0.8866
AR(4) -0.111736 0.064161 -1.741501 0.0826
MA(15) 0.094404 0.051323 1.839426 0.0668
SIGMASQ 3.56E-05 2.21E-06 16.11142 0.0000



Forecasting Gold Prices with ARIMA and GARCH Models 71

R-squared 0.022682     Mean dependent var -5.97E-05
Adjusted R-squared 0.013491     S.D. dependent var 0.006042
S.E. of regression 0.006001     Akaike info criterion -7.380858
Sum squared resid 0.011488     Schwarz criterion -7.334076
Log likelihood 1196.009     Hannan-Quinn criter. -7.362183
F-statistic 2.467831     Durbin-Watson stat 2.211924
Prob(F-statistic) 0.062082

Inverted AR Roots  .41-.41i      .41+.41i   -.41+.41i -.41-.41i
Inverted MA Roots  .84+.18i      .84-.18i    .69+.50i  .69-.50i

 .43-.74i      .43+.74i    .09-.85i  .09+.85i
-.26-.81i     -.26+.81i   -.57-.63i -.57+.63i

-.78+.35i     -.78-.35i        -.85

Appendix 3
Out of sample forecast outputs for ARIMA(4,0,15) Model

Source: Authors’ work

ARIMA (4, 0, 15) Forecast and actual Gold returns
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Appendix 4
Estimated Arima (4,0,15)-GARCH(1,1) NED

Source: Authors’ work

Dependent Variable: GOLDRETURN
Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 29/11/20 Time: 04:10
Sample (adjusted): 9/01/2018 29/03/2019
Included observations: 319 after adjustments
MA Backcast: 19/12/2017 8/01/2018
Presample variance: backcast (parameter = 0.7)
GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.

C -0.000105 0.000301 -0.349840 0.7265
AR(4) -0.133323 0.051743 -2.576643 0.0100
MA(15) 0.107483 0.044636 2.407965 0.0160

Variance Equation

C 9.16E-07 3.29E-07 2.781638 0.0054
RESID(-1)^2 -0.049707 0.010608 -4.685636 0.0000
GARCH(-1) 1.028605 0.010884 94.50265 0.0000

R-squared 0.024744     Mean dependent var -6.72E-05
Adjusted R-squared 0.018571     S.D. dependent var 0.006061
S.E. of regression 0.006004     Akaike info criterion -7.445947
Sum squared resid 0.011392     Schwarz criterion -7.375129
Log likelihood 1193.629     Hannan-Quinn criter. -7.417665
Durbin-Watson stat 2.204632

Inverted AR Roots  .43-.43i      .43+.43i   -.43+.43i -.43-.43i
Inverted MA Roots  .84-.18i      .84+.18i    .70-.51i  .70+.51i

 .43+.75i      .43-.75i    .09+.86i  .09-.86i
-.27+.82i     -.27-.82i   -.58-.64i -.58+.64i
-.79-.35i     -.79+.35i        -.86

Appendix 5
Out of sample forecast of estimated Arima (4,0,15)-GARCH(1,1) model.

Source: Authors’ work
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Appendix 6
Estimated Arima (4,0,15)-TGARCH(1,1) model.

Source: Authors’ work

Dependent Variable: GOLDRETURN
Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 29/11/20 Time: 04:12
Sample (adjusted): 9/01/2018 29/03/2019
Included observations: 319 after adjustments
MA Backcast: 19/12/2017 8/01/2018
Presample variance: backcast (parameter = 0.7)
GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*RESID(-1)^2*(RESID(-1)<0) + C(7)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.

C -0.000119 0.000386 -0.307336 0.7586
AR(4) -0.021601 0.071712 -0.301218 0.7632
MA(15) 0.066168 0.057024 1.160351 0.2459

Variance Equation

C 1.80E-05 5.84E-06 3.088908 0.0020
RESID(-1)^2 0.010559 0.001156 9.138269 0.0000
RESID(-1)^2*(RESID(-1)<0) -0.140454 0.018292 -7.678368 0.0000
GARCH(-1) 0.594519 0.157722 3.769424 0.0002

R-squared 0.014888     Mean dependent var -6.72E-05
Adjusted R-squared 0.008653     S.D. dependent var 0.006061
S.E. of regression 0.006035     Akaike info criterion -7.394553
Sum squared resid 0.011507     Schwarz criterion -7.311931
Log likelihood 1186.431     Hannan-Quinn criter. -7.361557
Durbin-Watson stat 2.184037

Inverted AR Roots  .27+.27i      .27-.27i   -.27-.27i -.27+.27i
Inverted MA Roots  .82-.17i      .82+.17i    .68-.49i  .68+.49i

 .42+.72i      .42-.72i    .09+.83i  .09-.83i
-.26+.79i     -.26-.79i   -.56+.62i -.56-.62i
-.76-.34i     -.76+.34i        -.83
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Appendix 7
Estimated Arima (4,0,15)-GARCH M (1,1) model

Source: Authors’ work

Dependent Variable: GOLDRETURN
Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 11/02/20 Time: 17:22
Sample (adjusted): 1/09/2018 3/29/2019
Included observations: 319 after adjustments
MA Backcast: 12/19/2017 1/08/2018
Presample variance: backcast (parameter = 0.7)
GARCH = C(5) + C(6)*RESID(-1)^2 + C(7)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.

@SQRT(GARCH) -0.223367 0.358184 -0.623610 0.5329
C 0.001143 0.001907 0.599499 0.5488
AR(4) -0.155548 0.043325 -3.590298 0.0003
MA(15) 0.112572 0.043659 2.578457 0.0099

Variance Equation

C 9.68E-07 2.63E-07 3.673154 0.0002
RESID(-1)^2 -0.043233 0.007141 -6.053935 0.0000
GARCH(-1) 1.019310 7.19E-05 14171.11 0.0000

R-squared 0.024564     Mean dependent var -6.72E-05
Adjusted R-squared 0.015274     S.D. dependent var 0.006061
S.E. of regression 0.006014     Akaike info criterion -7.419892
Sum squared resid 0.011394     Schwarz criterion -7.337270
Log likelihood 1190.473     Hannan-Quinn criter. -7.386896
Durbin-Watson stat 2.211751

Inverted AR Roots  .44+.44i      .44+.44i   -.44-.44i -.44-.44i
Inverted MA Roots  .85-.18i      .85+.18i    .70-.51i  .70+.51i

 .43+.75i      .43-.75i    .09+.86i  .09-.86i
-.27+.82i     -.27-.82i   -.58-.64i -.58+.64i
-.79-.35i     -.79+.35i        -.86

Appendix 8
Estimated Arima (4,0,15)-GARCH (1,1) model, STED

Source: Authors’ work

Date: 11/02/20 Time: 18:13
Sample (adjusted): 1/09/2018 3/29/2019
Included observations: 319 after adjustments
Convergence not achieved after 500 iterations
Coefficient covariance computed using outer product of gradients
MA Backcast: 12/19/2017 1/08/2018
Presample variance: backcast (parameter = 0.7)
GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*GARCH(-1)
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Variable Coefficient Std. Error z-Statistic Prob.

C -5.08E-05 0.000282 -0.179864 0.8573
AR(4) -0.130687 0.050099 -2.608586 0.0091
MA(15) 0.078296 0.045565 1.718356 0.0857

Variance Equation

C 8.06E-07 3.93E-07 2.052475 0.0401
RESID(-1)^2 -0.043664 0.014691 -2.972193 0.0030
GARCH(-1) 1.025096 0.016154 63.45860 0.0000

T-DIST. DOF 10.15989 5.681108 1.788364 0.0737

R-squared 0.023781     Mean dependent var -6.72E-05
Adjusted R-squared 0.017602     S.D. dependent var 0.006061
S.E. of regression 0.006007     Akaike info criterion -7.447819
Sum squared resid 0.011404     Schwarz criterion -7.365197
Log likelihood 1194.927     Hannan-Quinn criter. -7.414823
Durbin-Watson stat 2.203038

Inverted AR Roots  .43+.43i      .43+.43i   -.43-.43i -.43-.43i
Inverted MA Roots  .83-.18i      .83+.18i    .68-.50i  .68+.50i

 .42+.73i      .42-.73i    .09+.84i  .09-.84i
-.26+.80i     -.26-.80i   -.56-.63i -.56+.63i
-.77-.34i     -.77+.34i        -.84

Appendix 9
Out of sample forecast for Arima (4,0,15)-GARCH (1,1) model, STED

Source: Authors’ work
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Appendix 10
Estimated Arima (4,0,15)-GARCH (1,1) model, with GED

Source: Authors’ work

Dependent Variable: GOLDRETURN
Method: ML ARCH - Generalized error distribution (GED) (BFGS / Marquardt steps)
Date: 11/02/20 Time: 18:23
Sample (adjusted): 1/09/2018 3/29/2019
Included observations: 319 after adjustments
MA Backcast: 12/19/2017 1/08/2018
Presample variance: backcast (parameter = 0.7)
GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.

C -8.74E-06 0.000273 -0.032054 0.9744
AR(4) -0.118847 0.043753 -2.716296 0.0066
MA(15) 0.086765 0.043892 1.976765 0.0481

Variance Equation

C 9.33E-07 3.40E-07 2.746653 0.0060
RESID(-1)^2 -0.041527 0.009138 -4.544262 0.0000
GARCH(-1) 1.018951 0.000115 8851.844 0.0000

GED PARAMETER 1.498919 0.170362 8.798438 0.0000

R-squared 0.024507     Mean dependent var -6.72E-05
Adjusted R-squared 0.018333     S.D. dependent var 0.006061
S.E. of regression 0.006005     Akaike info criterion -7.440919
Sum squared resid 0.011395     Schwarz criterion -7.358297
Log likelihood 1193.827     Hannan-Quinn criter. -7.407923
Durbin-Watson stat 2.201290

Inverted AR Roots  .42-.42i      .42+.42i   -.42+.42i -.42-.42i
Inverted MA Roots  .83-.18i      .83+.18i    .69-.50i  .69+.50i

 .42+.74i      .42-.74i    .09+.84i  .09-.84i
-.26+.81i     -.26-.81i   -.57-.63i -.57+.63i
-.78-.35i     -.78+.35i        -.85

Appendix 11
Out of sample forecast for Arima (4,0,15)-GARCH (1,1) model, with GED

Source: Authors’ work
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Appendix 12
Estimated simple GARCH (1,1) model

Source: Authors’ work

Dependent Variable: GOLDRETURN
Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 11/03/20 Time: 07:49
Sample (adjusted): 1/03/2018 3/29/2019
Included observations: 323 after adjustments
Convergence achieved after 44 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.

C -3.69E-05 0.000337 -0.109455 0.9128

Variance Equation

C 4.50E-06 3.99E-06 1.128735 0.2590
RESID(-1)^2 -0.032156 0.019467 -1.651817 0.0986
GARCH(-1) 0.909209 0.097315 9.342962 0.0000

R-squared -0.000014     Mean dependent var -5.97E-05
Adjusted R-squared -0.000014     S.D. dependent var 0.006042
S.E. of regression 0.006042     Akaike info criterion -7.368937
Sum squared resid 0.011755     Schwarz criterion -7.322155
Log likelihood 1194.083     Hannan-Quinn criter. -7.350262
Durbin-Watson stat 2.186949
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Appendix 13
Out of sample forecast for simple GARCH (1,1) model

Source: Authors’ work




