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Abstract: Long memory of stock price return has not received its due attention
from researchers in Sri Lanka. This study employs fractional integration approach
to explain the behavior of stock price return of All Share Price Index (ASPI) in Sri
Lanka. The study coversthe period from January 02, 1985 to September 28, 2018,
consisting of 8803 observations. The return of the ASPI is defined as rt = [ln(ASPIt)
– ln(ASPIt–1)]*100. The Autoregressive Fractionally Integrated Moving Average
model(ARFIMA) is used to examine the presence of fractional integration in the
return series. The time domain exact maximum likelihood is used to estimate the
ARFIMA model. The Volatility of ASPI return series are proxied by absolute return,
squared return and conditional variance derived from fractionally integrated
GARCH(FIGARCH) model. The autocorrelation function of volatility decays
hyperbolically for lags 1 through 200. The results show that return series does not
have long memory, while the volatility series have long memory. The findings
indicate that stock market in Sri Lanka is not efficientand, the results provide
information to the investors, regulators, practitioners, derivative market
participants, traders and government policy makers to incorporate some risk in
their strategies.
Keywords: ARFIMA, exchange rate, fractional integration, Long memory, Sri Lanka

1. Introduction

A Basic understanding of the statistical properties of stochastic behavior of
stock price return series is important for investors, policy makes and
financial analysts. The study of long-range dependence in financial time
series has remained an active topic of research in economics and finance. It
will assist investors to make good investment decisions. Statistical
characteristics are extremely helpful for researchers who seek to understand
stock price changes statistically and simulate them efficiently. The question
of whether stock markets are efficient or not, is directly related to the long
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memory (LM) in the stock price changes (Sadique, andSivapulle, 2001).
Therefore, detecting long memory in a stock price dynamics is important
to understand whether stock markets of an economy are efficient or not.
Optimal savings, and portfolio decisions may become extremely sensitive
to the investment horizon if stock returns exhibit LM. Traditional tests of
the capital asset pricing model and the arbitrage pricing theory are no longer
valid if the series exhibit LM. LM would suggest a very strong market
inefficiency. It is extremely important to understand not only stock price
return change but also the volatility of stock price return in a stock
market.The term volatility represents a generic measure of the magnitude
of market fluctuations. Understanding volatility of stock return has also
become extremely important to understand stock price dynamics indepth.
The volatility of stock price return process is concerned with the evolution
of conditional variance of the return over time.

The ARIMA model examines the temporal dynamics of an economic
variable as integer integration, under which time series are presumed to be
integrated to order zero or one. In addition, Conventional unit root tests
only account for integer values. The ARFIMA model (ARFIMA (p,d,q)) is
highly restrictive, being constrained to the integer domain. For example, in
practice, some series do not possess a unit root, while they show signs of
dependence. Recent advances in computing and econometric techniques
have motivated researchers to consider the fractional values of integration
of the time series. The concept of fractional integration reveals the hidden
characteristics of the LM or long range dependence and the short memory
(SM) of economic stationary time series. The fractional differencing parameter
approach accounts for the fractional values so that it generalizes the ARIMA
model and offers more flexibility in modeling to explain both the short term,
long term correlation structure of a time series. However, there are scarce
studies investigating the memory properties of Sri Lankan stock price return
usingthe fractional integration technique. This is a new attempt to study the
ASPI dynamics based on the fractional integration approach

There are few studies such as Amarasinghe (2015), Hemamala and
Jameel (2016), Lakmali and Madhusanka (2015), Menike (2006) and
Wickremasing he (2011) that have attempted to examine the ASPI dynamics.
However, their focus has been mainly on economic aspects, such as factors
affecting ASPI, or impact of ASPI changes on the economy. There exists no
in-depth scientific econometric analysis on the LM of volatility dynamics
of the ASPI changes. LM in volatility may lead to some types of volatility
persistence as observed in financial markets and affect volatility forecasts
and derivative pricing formulas. This study intends to fill this gap in the
finance literature and provide an in-depth analysis.
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Results of the study may provide relevant implications that will be
useful/beneficialfor stock market investors and policy makers. A
comprehensive understanding of time series and statistical properties of
ASPI in Sri Lanka might provide useful implications that would crucially
determine the direction of future research and facilitate the development
of effective monetary, and trade policies. Therefore, this study would
contribute significantly to the existing knowledge. This paper makes two
main contributions: first, it provides evidence of LM in the stock prices of
ASPI in Sri Lanka; second, it presents a comprehensive research on LM
characteristics in the Sri Lankan stock market returns as well as volatilities.

The objective of this study is to examine the long memory property in
the ASPI pricedynamics using the fractional integration approach. The
specific aim of the study is to estimate the LM parameter (d-fractional
integration parameter) for Sri Lankan stock market using ASPI return and
volatility series.

The research paper is organized as follows:Section 2presents literature
review. Section 3 describes the theoretical framework of fractional
integration, Section 4 outlinesmethodology, section 5 explains results and
discussions and the last section is the conclusion.

2. Review of Literature

A lot of empirical studies have addressed the issue of the presence of long
memory components in stock prices. Bachelier (1900) has originally
examined the first complete model of stock return behavior over time.
Osborne (1959) developed random walk model based on Bachelier’s model.
Fama (1965) performed the first rigorous testing of the random walk
hypothesis with a statistical analysis equity return distributions.

Chow, et al. (1995) examined the issue of memory in common stock
returns through an analysis of both short – and long-run dependencies in
various equity time series using traditional rescaled range statistic-
(R/S), and modified rescaled range statistic. They concluded that random
walk hypothesis remains a valid description of stock market return
performance.

Mandelbrot (1971) first studied the effects of long memory on financial
markets using Hurst’s R/S statistic to identify long memory behavior in
asset return data. Since then, several empirical studies such as Greene and
Fielitz (1977) have supported Mandelbrot’s findings. They examine the daily
returns of a plethora of securities listed on the New York Stock Exchange
using the “R/S” statistic method and provide evidencein support of long
memory in the daily stock return series.
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Lo (1991) proposes a modified test of the R/S statistic which can
distinguish between short term dependence and long term dependence
and finds that daily stock returns do not show long range dependence
properties. Cheung and Lai (1995) investigated long memory of stock
markets of Austria, Italy, Japan and Spain and they detected long memory
in these markets. In addition, this finding wasinvariant to the choice of
estimation methods used in Several studies, Lo (1991), Ding et al (1993),
Lee and Robinson (1996) and others have used various techniques for testing
long memory in stock returns. The conclusions of these studies are mixed
depending on the testing techniques, such as sample periods, frequencies
of the series, and composite stock returns. Vaga (1990) and Lux (1995) argue
that an abnormal profit can be made if long memory is present in the stock
return. Barkoulas et al (2000) report evidence of long memory in the Greek
stock market for the period of ten years. They estimate thefractional
differencing parameter through application of the spectral regression
technique. In addition, they report that the ARFIMA model provides better
out ofsampleforecasting accuracy in comparison to the benchmark linear
(random walk) models. Sadique, and Sivapulle, (2001) have examined the
presence of long memory in the stock returns of seven countries, namely
Japan, Korea, New Zeland, Malaysia, Singapore, the USA and Australia.
They applied nonparametric and semi-parametric methods to these returns
to detect long memory properties.

A standard long memory model is ARFIMA (p, d, q) model introduced
by Granger and Joyeux (1980) and Hosking (1981). These models provide
an alternative to ARIMA (p, d, q) process by not restricting the parameter, d
to aninteger value (0 or 1) but allowing it to assume any real value.

Bhattacharya, and Bhattacharya, M (2012) investigated long memory
property in ten emerging stock markets across the globe using Hurst-
Mandelbrot’s classical R/S statistic, and Lo’s statistic and semiparametric
GPH statistic (Geweke and Porter-Hudak ,1983). They found return series
exhibit long memory and are not independent.

In the meantime, several studies investigated the presence of long
memory in variance process. For example, Hiemstra and Jones (1997) found
that the mean returns of a number of US common stocks do not possess
long memory, whereas the squared returns do.

Bhattacharya, and Bhattacharya, (2012) studied the existence of long
memory properties in ten emerging stock markets across the globe.Hurst-
Mandelbrot’s Classical R/S statistic, Lo’s statistic and semi parametric GPH
statistic were computed as well as modified GPH statistic of Robinson (1995).
The findings suggest existence of long memory in volatility as well as in
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absolute returns and random walk for asset return series in general for all
the selected stock market indices. Though LM in stock prices has been
widely examined in developed countriesas evident from the discussion
above, there are scarce studies on LM in stock price return series in
developing countries, particularly in Sri Lanka.

3. The Theoretical Model

This section describes the econometric models relevant to the paper It covers
the ARFIMA model that is employed to study mean dynamics. The
FIGARCH model is employed to study the volatility dynamics.

3.1. Long Memory in Time Series

Long memory is also referred to as Long-range dependence. It basically
refers to the level of statistical dependence between two points in the time
series. More specifically, it relates to the rate of decay of statistical
dependence between the two points as we increase the distance between
them.Long memory describes the correlation structure of a series at long
lags. In the time domain, long memory is characterized by a hyperbolically
decaying auto covariance function.Long memory plays an important role
in many fields by determining the behaviour and predictability of systems.

3.2. Autoregressive Fractionally Integrated Moving Average Model

Granger and Joyeux (1980), Hosking (1981, 1982), Sowell (1990) and Geweke
and Porter-Hudak (1983) have employed fractional integration approach
to study long memory processes. Granger and Joyeux (1980) and Hosking
(1981) introduced the ARFIMA model which is now widely used in practice
to model long memory in equity returns.

The most commonly used ARMA (p,q) model is not well suited to model
the long-run behavior of a time series. The ARIMA model examines the
temporal dynamics of an economic variable as integer integration, under
which time series are presumed to be integrated to order zero, I(0), or one.
I(1). This is highly restrictive, being constrained to the integer domain.
Hence, we employ the fractional integration approach in the study. The
ARFIMA model is not restricted to the integer domain and can assume real
values. This is a parsimonious and flexible model to study long memory
and short run dynamics simultaneously. Fractional integration is a more
general way to describe long-range dependence than integer integration
specification. This study employs the ARFIMA (p,d,q) frame work to test
long memory in ASPI return dynamics. When d=0, the series is stationary,
and shows SM and mean reversion with finite variance. In this case, the
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effects of a shock in a variable are transitory. When d=0, autocorrelation
function (ACF) decays exponentially to zero. If d=0.5, the process is
invertible but nonstationary. If d = -0.5, the process is stationary but not
invertible. When d=1, the series is integrated order one, having unit root,
being non-stationary, with infinite variance, and is non-mean reverting. In
this case, the effect of a shock in the series is permanent, having a long-
term effect, forever persistent. If d>1, the series is non-stationary, non-mean
reverting, with infinite memory. In this case, the effect of a shock is
permanent divergence. For d<1, the series is mean-reverting. When d  0.5,
the series does not have stationary covariance, and consequently it has
infinite covariance (Baillie et al. 1996). Therefore the process is non-stationary
(Granger and Joyeux, 1980). However, long-range dependence is associated
with all nonzero, d >0. Thus, the memory property of a process depends
significantly on the value of d. For –0.5 < d < 0, the series is stationary, with
intermediate memory and anti-persistent.If the parameter d is statistically
significant, and lies 0<d<0.5, it indicates the evidence of LM and behaves
as if fractionally integrated, indicating strong dependence across past
observations. The autocorrelations are positive and the ACF decay
hyperbolically and monotonically towards zero as the lag length increases.
The correlation between distant observations can be relatively high,
implying that LM exists. The effects of a shock in real output last in the
long run. When 0.5 < d < 1, the process still has LM, but the series is no
longer covariance stationary and mean reverting. The effect of a shock in
the series is long-lasting and decays at an even slower rate. Thus, the
memory property of a process depends significantly on the value of d.

Using the theoretical knowledge discussedabove, we test whether the
return of ASPI has LM. For return series, ARFIMA(p,d,q) process can be
written as : tt
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where (.)�  is the gamma function, rt is both stationary and invertible if the

roots )L(�  and )L(� are outside the unit circle, and 5.0�d . The parameter

d is allowed to assume any real value. This model permits the degree of
differencing (d) to take fractional values. LM processes are stationary
processes whose autocorrelation functions decay more slowly than SM

processes. Hosking (1981) showed that the autocorrelation, )0(
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an ARFIMA processes is proportional to k2d–1 as ��k , i.e [ 12    �� dk)k(� ].

Note k = lags. It implies that the autocorrelations of ARFIMA processes
decay hyperbolically to zero as ��k . In the time domain, a hyperbolically
decaying auto-correlation function characterizes the presence of LM. Thus,
ARFIMA (p, d, q) processes are known to be capable of modeling long-run
persistence. The d is the fractional integration parameter that measures long
range dependence of the series. The power spectrum of the ARFIMA (p,d,q)
process Yt is given by [2]
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The information criteria Akaike (AIC) and Schwarz (SBC) defined below
in [3] and [4] are used to select a parsimonious model ARFIMA (p,d,q)

2/))2(2()/ˆ(2 ����� qpnlAIC (3)

2/))ln()2(()/ˆ(2 nqpnlSBC ����� (4)

where l̂  is the value of the maximized likelihood. The best model is selected
for the smallest values of AIC or SBC. The selected ARFIMA model is a
parsimonious and flexible model that can be used to study long memory.

3.3. The FIGARCH Model

The FIGARCH (p,d,q); fractionally integrated GARCH model introduced
by Baillie, Bollerslev, and Mikkelsen (1996), and wasused to capture long
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memory in volatility. In the FIGARCH model, the persistent behavior of
volatility is modelled using a fractional difference parameter (d), while short
term volatility is modeled by conventional ARCH and GARCH parameters.

The standard generalized autoregressive conditional heteroscedasticty
(GARCH) model is stated as

2( ) ( ) ht t th L L� � � �� � � (5)

where ht, 
2

t are conditional and unconditional variances of t� respectively.
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The GARCH (p,q) process in equation [5] can be rewritten as an ARMA

(m,p) process in 2
t� such that we have

2[1 ( ) ( )] [1 ( ]t tL L L� � � � � �� � � � � (6)

where 2 2
t t t� � �� � .

To ensure covariance stationarity the roots

[1 ( ) ( )]   and [1- (L)]L L� � �� �  are constrained to lie outside the unit circle.

When the autoregressive lag polynomial, 1 ( ) ( )  L L� �� � , contains a unit
root, the model is referred to as an integrated GARCH process (Engle and
Bollerslev1986) and is specified by

2( )(1 ) [1 ( )]t tL L L� � � � �� � � � (7)

From this model, the FIGARCH model is obtained by introducing the
fractional differencing operator, (1 – L)d, such that

tt
d LLL ����� )](1[)1)(( 2 ���� (8)

Like ARFIMA process for the mean, the fractional differencing operator,

(1 )dL� , can also be given by the gamma function. In addition, (0,1)d �
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and all the roots of ( )  and [1- (L)]L� �  lie outside the unit circle.The
FIGARCH (p,d,q) model nests a variety of other GARCH models, and is
equivalent to the standard GARCH model and the IGARCH process, when
d = 0 and d = 1, respectively. The value of the fractional differencing
parameter, d, captures long memory in the FIGARCH modeland depends
on the decay rate of a shock.The interpretation of the long memory
parameter is not identical to that reflected by the ARFIMA because the
FIGARCH process may not be covariance stationary but strictly stationary

and ergodicfor 0 1d� � , and hence the unconditional variance of t�  does
not exist (Baillie, et al, 1996)

4. Methods

4.1. Data

Data used in the study are the daily stock pricesof Sri Lanka, indicated by
ASPI. This is the longest and the broadest price measure of the Sri Lankan
Stock market.The Colombo All Share Index is a major stock market index
which tracks the performance of all companies listed on the Stock Exchange
in Sri Lanka. It is a capitalization weighted index. The AllShare Price Index
(ASPI) has a base value of 100 as of 1985. The ASPI measures the movement
of share prices of all listed companies in Sri Lanka.

The study coversthe period from January 02, 1985 to September 28, 2018,
consisting of 8803 observations. These data were collected from the Colombo
Stock Exchange (CSE).The daily changes of the ASPI are measured by the
return series defined as

1[ln(ASPI ) ln(ASPI )]*100t t tr �� � (9)

where ASPIt = All stock price indices, LASPI = ln(ASPI). The absolute return

( tr ) and squared return ( 2
tr ) and conditional variance are used as proxies

for the volatility of ASPI. Conditional variance is derived from the
FIGARCH model. The LM parameter for ASPI return volatilityseries is
estimated by using the fractional integration GARCH (FIGARCH) model
for variance equation.

4.2. Analytical tools

4.2.1 Unit root tests

Before estimating the LM parameter, we tested whether the ASPI return is
non-stationary using standard unit root tests; the Augmented Dickey-Fuller
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(ADF) test, the Phillips and Perron (PP) test and the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) tests.Then, we tested for long memory of return of
ASPI series using ARFIMA and FIGARCH models.

5. Results and Discussions

This section describes the empirical results of ARFIMA and FIGARCH
models application for ASPI return series. In preliminary analysis, line
graph, kernel density function, unit root tests are employed. The ARFIMA
model is estimated to examine long memory of ASPI return series and the
FIGARCH model is estimated to examine long memory of volatility of
(second moment) ASPI return series.

5.1. Basic features of ASPI dynamics in Sri Lanka

Figure 1 exhibits a time series plot of ASPI.TheASPI series moves
upwardwith slow increase till 2000 then increases remarkably with
volatility. Visual inspection indicates that the series seems to be non-
stationary. The second moment of the ASPI distribution vary over time.

Figure 1: ASPI behavior, January 02, 1985 to September 28, 2018

5.1.1. Stylized facts of ASPI return

The returns have very little correlation, close to zero. However, conditional
mean remains roughly constant. The standard deviation of returns
completely dominates the mean of the returns.
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Figure 2 shows that the return series appears to be random fluctuations
around zero and with time varying variance. However, the return series
behave differently. It displays erratic behavior. The return series shows that
the first moment seems to be constant, close to zero over time, but the second
moment of the return, variance varies over time. There exists a volatility
clustering salient feature in the ASPI return dynamics. These facts imply the
necessity of considering nonlinear models to describe the observed patterns.

Figure 2: The Return of ASPI behavior, January 1, 1985 to September 28, 2018

Summary statistics for the ASPI stock returns for daily frequencies are
given in Table 1. One of the features which stands out prominently (K=36.79)
is that the kurtosis of the return series is much larger than the normal
distribution value (k=3). This reflects the fact that the tails of the distribution
of the return series are fatter than the tails of the normal distribution.

Table 1
Summary statistics for stock returns

Mean Median Minimum Maximum Std.Dev Skewness Kurtosis

ASPI return 0.05 0.01 -13.89 18.28 1.03 0.90 36.79

5.1.2. The Kernel Density Plot

The curve in Figure 3 shows the density plot which is essentially a smooth
version of the histogram for the ASPI return distribution with the normal
distribution imposed. It gives more weight to data that are closest to the
point of evaluation. This shows that return distribution is symmetric and
more peaked and have fatter tail than the corresponding normal
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distribution. Both very small and very large observations occur more often
compared to a normally distributed return.The return density function
shows leptokurtic behavior. This reflects the fact that the tails of the return
distributions is fatter than the tails of the normal distribution. The significant
values of Jarque-Bera and Shapiro statistics strongly confirm the non-
normality of the returns.

Figure 3: The Density function of Return of ASPI dynamics

It is also important to describe the second moment of a distribution and
understand its dynamics. The volatility of the return series is given in Figure
4, Figure 5, and Figure 6 which show the dynamic pattern of the volatility
proxies of ASPI return.

Figure 4: Absolute return dynamics
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5.1.3. The Autocorrelation function

The ACF of volatility proxies for the ASPI return decays slowly at hyperbolic
rate. This figure provides strong evidence of long memory. The impact of
shock t� on ASPI return does not diminish over time.

Figure 5: Squared return dynamics

Figure 6: Conditional variance dynamics
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5.2 Unit root test results

The results of unit root tests givenin Table2 indicate that ASPI at level
is nonstationary, as the pvalue is greater than 0.05. The return series is
stationary as the p value is less than 0.05 for ADF, PP and KPSS tests.
However, in the case of volatility proxies, all proxies are stationary except
the absolute return. The KPSS test is contradictory to ADF and PP test results
show that Absolute return is not stationary series. This contradiction
motivates for a fractional integration approach.

Table 2
Unit root test results

Exchange Rate Level with intercept

ADF PP KPSS

LASPI (Level) -3.902 -1.502 10.377
(0.192) (0.532) [0.463]

RETURN of ASPI -37.529 -68.738 0.162
(0.000) (0.000) [0.463]

ABSOLUTE RETURN of ASPI -5.222 -93.660 0.713
(0.000) (0.000) [0.463]

SQUARED RETURN of ASPI -23.304 -95.394 0.406
(0.000) (0.0001) [0.463]

CONDITIONAL VARIANCE -18.561 -74.009 0.415
(0.000) (0.0001) [0.463]

Note: p values are given in parentheses. Critical value (5%) is given in square brackets

Figure 7: The ACF of squared return, absolute return and conditional variance of ASPI
for lags 1-200
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5.3. Estimates of ARFIMA model

The estimated results of the ARFIMA model using STATA are presented
in Table 3. Long memory parameter estimates of return series (d) is
statistically significant and lie within the interval 0 to 0.5. This indicates
that return series exhibits long memory. The autoregressive parameter
estimatesare given under AR(1), the parameter estimates of moving average
term is given under MA(1). Log likelihood ratio values are given under LL,
p values are given within parentheses, and dindicatesfractional difference
parameter. The MA parameter is significantly different from zero. Thenull
hypothesis for the study is Ho: d=0 vs H1: d>0. The findings show that the
estimate of the fractional differencing parameter for return series is
statistically significant.

Table 3
Results from ARFIMA (1,d,1) regression models for Return of ASPI series

ITEMS Constant AR(1) MA(1) d LL Wald-Chi2

Return of ASPI 0.050 -0.017 0.230 0.094 -11328.424 802.83
(0,096) (0.778) (0.00) (0.000) (0.000)

Note: p values are in parenthesis

5.4. Evidence from the FIGARCH Volatility Model

Though the ADF and PP tests show that volatility proxies are stationary,
the KPSS test indicates that absolute return is nonstationary that is
contradictory with the results of other unit root tests. This contradiction
motivates us to employ fractional integration technique. Fractional
difference parameter estimates show that volatility proxies is stationary
(d<0.5) and have long memory. The absolute return is non- stationary and
has long memory. The estimates of the FIGARCH model show that d is
significantly different from zero. Long memory parameter estimates for
volatility proxies are statistically significant and different from zero. It
indicates that volatility series of ASPI return exhibits long memory. Long

Table 4
The FIGARCH(1,d,1) model of volatility proxies of ASPI

ITEMS constant d ARCH GARCH LL

Squared-return 6.481 0.651 0.635 0.428 -24208.07
(0.509) (0.000) (0.000) (0.000) -

Absolute-return 0.051 0.391 0.361 0.288 -9336.54
(0.005) (0.000) (0.017) (0.058) -

Conditional variance — 0.428 0.562 0.061 -16969.53
(0.000) (0.000) (0.004) -

(p values are in parentheses), LL=log likelihood
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memory volatility series tends to change quite slowly over time. The effects
of a shock take considerable time to decay.

6. Conclusion

This study has examined the presence of the property of long memory in
daily stock return of Sri Lanka for the period from January 02, 1985 to
September 28, 2018. The ARFIMA models are estimated using maximum
likelihood method. The estimates of long memory parameter (d)indicates
that the returnof ASPI series exhibits long memory.The estimated results
suggest that the volatility of ASPI returnexhibit long memory. The long
memory of return and volatility of ASPI indicates that the impact of shocks
on stock prices persists over a long period of time. This indicates that stock
market in Sri Lankais not efficient as well as unstable. The findings have
important policy implications for government policy makers and
participants of the stock market of Sri Lanka. Hence, the results provide
information beneficial to the investors and traders to incorporate risk factors
to their strategies. Hence, these findings are useful to the traders, investors
in the stock markets in Sri Lanka.
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